Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T13:02:37.820Z Has data issue: false hasContentIssue false

Infrared Emission from Dust in Supernovae and Supernova Remnants

Published online by Cambridge University Press:  23 September 2016

Eli Dwek*
Affiliation:
Laboratory for Astronomy and Solar Physics, NASA/ Goddard Space Flight Center

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The need to replenish the reservoir of interstellar dust grains that are continuously being destroyed in the interstellar medium, and the presence of isotopic anomalies in meteorites, suggest that supernovae may be important sources of interstellar dust. Infrared observations of supernovae or their unmixed ejecta may provide the first direct evidence for newly-formed grains in this environment. The recently discovered supernova, SN 1987A, currently offers the best prospects for observing the actual process of dust formation in a supernova.

In contrast, supernova remnants constitute the most important grain destruction mechanism in the galaxy. Interstellar dust swept up by the expanding blast wave is predominantly heated and destroyed by collisions with a shocked x-ray emitting plasma. Infrared observations of remnants can therefore provide valuable information on the interaction between dust particles and a hot gas. This interaction can best be studied in supernova remnants detected with the Infrared Astronomical Satellite (IRAS). This paper reviews what we have learned so far on the subjects of grain formation and destruction by studying the infrared emission from supernovae and supernova remnants.

Type
Section VIII: Dust Formation and Destruction
Copyright
Copyright © Kluwer 1989 

References

Aitken, D. K., Smith, C. H., James, S. D., Roche, P. F., Hyland, A. R., and McGregor, P. J. 1988, M. N. R. A. S., 231, 7.Google Scholar
Anders, E. 1989, in IAU Symposium 135, Interstellar Dust, eds. Allamandola, L. J. and Tielens, A. G. G. M., (Dordrecht: Kluwer), p. 389 Google Scholar
Arendt, R., Dwek, E., and Petre, R. 1989, in Interstellar Dust Contributed Papers, eds. Tielens, A. G. G. M. and Allamandola, L. J., NASA CP-3036.Google Scholar
Arendt, R., Dwek, E., Petre, R., and Dickel, J. R. 1988, in preparation.Google Scholar
Braun, R. 1986a, Astr. Ap., 164, 193.Google Scholar
Braun, R. 1986b, Astr. Ap., 164, 208.Google Scholar
Braun, R. 1987, Astr. Ap., 171, 233.Google Scholar
Chevalier, R. A., and Kirshner, R. P. 1979, Ap. J., 233, 154.Google Scholar
Draine, B. T., and Salpeter, E. E. 1979, Ap. J., 231, 77.CrossRefGoogle Scholar
Dwek, E. 1983, Ap. J., 274, 175.CrossRefGoogle Scholar
Dwek, E. et al. 1986, in Interrelationships Among Circumstellar, Interstellar, and Interplanetary Dust, eds. Nuth, J. A. III, and Stencel, R. E., NASA CP-2403, p. WG 1.Google Scholar
Dwek, E. 1987, Ap. J., 322, 812.Google Scholar
Dwek, E., Dinerstein, H. L., Gillett, F. C., Hauser, M. G., and Rice, W. L. 1987, Ap. J., 315, 571.Google Scholar
Dwek, E. 1988, in Supernova Remnants and the Interstellar Medium, IAU Colloquium 101, eds. Roger, R. S. and Landecker, T. L., (Cambridge: Cambridge Univ. Press), p. 363.Google Scholar
Dwek, E., and Spiesman, W. J. 1988, in preparation.Google Scholar
Fesen, R. A., Shull, J. M., and Saken, J. M. 1988, Nature, in press (FSS).Google Scholar
Gehrz, R. D. 1989, in IAU Symposium 135, Interstellar Dust, eds. Allamandola, L. J. and Tielens, A. G. G. M., (Dordrecht: Kluwer), p. 445.Google Scholar
Graham, J. R., and Meikle, W. P. S. 1986, M. N. R. A. S., 221, 789.CrossRefGoogle Scholar
Kirshner, R. P. 1988, in Supernova 1987A in the Large Magellanic Cloud, eds. Kafatos, M. and Michalitsianos, A. G., (Cambridge: Cambridge Univ. Press), p. 87.Google Scholar
Leahy, D. A., and Marshall, C. R. 1988, M. N. R. A. S., in press.Google Scholar
Mathis, J. S., Rumpl, W., and Nordsieck, K. H. 1977, Ap. J., 217, 425.Google Scholar
McKee, C. F. 1989, in IAU Symposium 135, Interstellar Dust, eds. Allamandola, L. J. and Tielens, A. G. G. M., (Dordrecht: Kluwer), p. 431.Google Scholar
McKee, C. F., and Ostriker, J. P. 1977, Ap. J., 218, 148.Google Scholar
Murray, S. S., Fabbiano, G., Fabian, A. C., Epstein, A., and Giacconi, R. 1979, Ap. J. (Letters), 234, L69.Google Scholar
Moseley, S. H., Dwek, E., Silverberg, R. F., Glaccum, W. J., Graham, J. R., and Loewenstein, R. F. 1988, Ap. J., submitted.Google Scholar
Mufson, S. L., McCollough, M. L., Dickel, J. R., Petre, R., White, R., and Chevalier, R. 1986, A. J., 92, 1349.CrossRefGoogle Scholar
Petre, K., Canizares, C. R., Kriss, G. A., and Winkler, P. F. 1982, Ap. J., 258, 22.Google Scholar
Pisarski, R. L., Helfand, D. J., and Kahn, S. M. 1984, Ap. J., 277, 710.Google Scholar
Rank, D. M., Pinto, P. A., Woosley, S. E., Bregman, J. D., Witteborn, F. C., Axelrod, T. S., and Cohen, M. 1988, Nature, 331, 505.Google Scholar
Seab, C. G. 1987, in Interstellar Processes, eds. Hollenbach, D., and Thronson, H. A. Jr., (Dordrecht: Reidel), p. 491.Google Scholar
Smith, C., James, S., and Aitken, D. 1988, IAU Circ. No. 4645.Google Scholar
Szymkowiak, A. E. 1985, , .Google Scholar
Witteborn, F., Bregman, J., and Wooden, D. 1988, IAU Circ. No. 4592.Google Scholar
Woosley, S. E. 1988, Ap. J., 330, 218.CrossRefGoogle Scholar