Hostname: page-component-cc8bf7c57-fxdwj Total loading time: 0 Render date: 2024-12-11T06:01:13.039Z Has data issue: false hasContentIssue false

Inelastic collisions of interstellar molecules

Experiment Versus Theory

Published online by Cambridge University Press:  25 May 2016

J.J. Ter Meulen*
Affiliation:
Department of Molecular and Laser Physics, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The rotational energy transfer of NH3, OH and D2CO in inelastic collisions with He and H2 is studied in a crossed molecular beam experiment. The molecules are prepared in a single initial state by rotational cooling in an adiabatic expansion followed by electrostatic state selection. Relative state-to-state cross sections are determined by measuring the collision induced redistribution of the population of the initial state by using state selective laser detection techniques. The results for NH3 and OH are compared to theoretical values obtained from quantum calculations. Except for NH3 — He where theory predicts a parity selection rule for transitions to the 33 and 43 states, which is not observed in the experiment, good agreement between experiment and theory is obtained.

Type
Basic Molecular Processes
Copyright
Copyright © Kluwer 1997 

References

Andresen, P., Aristov, N., Beushausen, V., Husler, D., Lülf, H.W. 1991, J. Chem. Phys. 95, 5763.CrossRefGoogle Scholar
Ebel, G., Krohne, R., Meyer, H., Buck, U., Schinke, R., Seelemann, T., Andresen, P., Schleipen, J., ter Meulen, J.J., Diercksen, G.H.F. 1990, J. Chem. Phys. 93, 6419.Google Scholar
Esposti, A.D., Berning, A., Werner, H.J. 1995, J. Chem. Phys. 103, 2067.Google Scholar
Green, S. 1979, J. Chem. Phys. 70, 816.CrossRefGoogle Scholar
Meyer, H., Buck, U., Schinke, R., Diercksen, G.H.F. 1986, J. Chem. Phys. 84, 4976.Google Scholar
Offer, A.R., Flower, D.R. 1989, J. Phys. B 22, L439; ibid. 1990, J. Chem. Soc. Far. Trans. 86, 1659.Google Scholar
Offer, A.R., van Hemert, M.C., van Dishoeck, E.F. 1994, J. Chem. Phys. 100, 362.Google Scholar
Schleipen, J., ter Meulen, J.J. 1991, Chem. Phys. 156, 479.Google Scholar
Schleipen, J., ter Meulen, J.J., van der Sanden, G.C.M., Wormer, P.E.S., van der Avoird, A. 1992, Chem. Phys. 163, 161.Google Scholar
Schleipen, J., ter Meulen, J.J., Offer, A. 1993, Chem. Phys. 171, 347.Google Scholar
Schreel, K., Schleipen, J., Eppink, A., ter Meulen, J.J. 1993, J. Chem. Phys. 99, 8713.Google Scholar
Schreel, K., ter Meulen, J.J. 1996, J. Chem. Phys. to be published.Google Scholar
Van der Sanden, G.C.M., Wormer, P.E.S., van der Avoird, A., Schleipen, J., ter Meulen, J.J. 1995, J. Chem. Phys. 103, 10001.Google Scholar
Van der Sanden, G.C.M., Wormer, P.E.S., van der Avoird, A., Schleipen, J., ter Meulen, J.J. 1992, J. Chem. Phys. 97, 6460.Google Scholar
Van Hulst, N.F., ter Meulen, J.J., and Dymanus, A. 1987a, J. Chem. Phys. 86, 1407; ibid. 86, 4461.CrossRefGoogle Scholar
Van Hulst, N.F., ter Meulen, J.J., and Dymanus, A. 1987b, J. Chem. Phys. 87, 2750.Google Scholar