Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T03:52:51.406Z Has data issue: false hasContentIssue false

Improved Method for Orbital Elements Differential Correction

Published online by Cambridge University Press:  19 July 2016

A. López García
Affiliation:
1) Observatorio Astronómico de la Universidad de Valencia.
J. A. López Ortí
Affiliation:
1) Departamento de Matemática Aplicada y Astronomía. 2) Colegio Universitario de Castellón. Universidad de Valencia.
R. López Machí
Affiliation:
1) Departamento de Matemática Aplicada y Astronomía. 2) Colegio Universitario de Castellón. Universidad de Valencia.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As was pointed out by IAU in 1976, an important problem in fundamental astronomy is the improvement of the vernal equinox and equator positions. To this aim, it is necessary to know the accurate values of minor planets orbital elements. The classical methods of orbital elements differential corrections are based on linking the observations at different epochs considering equal derivatives respect to the initial and osculating elements.

In this paper we present an improved method in which the least squares matrix coefficients is calculated from the integration of the Lagrange planetary equations and its derivatives.

Type
Part 3: Concepts, Definitions, Models
Copyright
Copyright © Kluwer 1990 

References

Bretagnon, P.; Francou, G. Astron. Astrophys. , 202, 309315. (1988).Google Scholar
Brower, D.; Clemmence, G. M. METHODS OF CELESTIAL MECHANICS. Academic Press. (1961).Google Scholar
Calaf, J.; Catalá, Ma.A., Actas IV Asamblea Nacional de Astronomía y Astrofísica. Vol. II, 941954. Santiago, (1983).Google Scholar
García, López et al. Asteroids, Comets, Meteors III. Com. n o 160. Uppsala, (1989). Simon, J. L. Astron. Astrophys. , 175, 303–308. (1987).Google Scholar