No CrossRef data available.
Published online by Cambridge University Press: 25 May 2016
We present the results of our major HST study of the evolution of PN in the Magellanic Clouds. This consists of imaging studies in [O III] and FOS UV spectroscopy. These data are then used in theoretical photoionisation models in conjuction with ground-based spectrophotometry, absolute flux and expansion velocity and density to derive self consistent diameters, ages, masses, and nebular abundances and to accurately place the central stars on the H-R Diagram. We find that observed sizes and ages can be reconciled with evolutionary theory provided that the He-burners outnumber the H-burners in the approximate ratio 2:1. For the LMC observed abundance patterns are qualitatively consistent with the (mass-dependent) operation of the various chemical dredge-up processes as predicted by theory. However, the observed dredge-up efficiencies do not agree with current theory. Finally, since core masses are determined with adequate precision, we are able to derive, for the first time, the metallicity age relation for of the LMC. We find that the base metallicity of the LMC rapidly increased ∼ 2 Gyr ago, consistent with the age of the burst of star formation inferred from field stars and clusters.