Hostname: page-component-cc8bf7c57-ksm4s Total loading time: 0 Render date: 2024-12-12T06:21:28.741Z Has data issue: false hasContentIssue false

High-energy Emission from Supernovae and Remnants

Published online by Cambridge University Press:  25 May 2016

R. A. Chevalier*
Affiliation:
Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An early burst of energetic radiation is expected from a supernova at the time of shock breakout. This emission has not been directly observed but has been inferred from the photoionization around SN 1987A. X-ray emission has been detected from core-collapse supernovae in the days to years after the explosion as they interact with their circumstellar winds. Young Galactic supernova remnants provide the possibility of determining the composition structure of the ejecta through X-ray spectroscopy. An exciting finding for older remnants is that a number of remnants that appear to be interacting with molecular gas may be sources of high-energy γ-ray emission. The clumpy structure of molecular clouds has implications for the structure expected in high-energy emission. Finally, the field of γ-ray-line spectroscopy is beginning to yield results relevant to the explosive nucleosynthesis of radionuclides in supernovae.

Type
Part I: Talks
Copyright
Copyright © Astronomical Society of the Pacific 2000 

References

Ahmad, I., Bonino, G., Castagnoli, G. C., Fischer, S. M., Kutschera, W., & Paul, M. 1998, Phys. Rev. Lett., 80, 2550.CrossRefGoogle Scholar
Baring, M. G., Ellison, D. C., Reynolds, S. P., Grenier, I. A., & Goret, P. 1999, ApJ, 513, 311.CrossRefGoogle Scholar
Borkowski, K., Blondin, J. M., & McCray, R. A. 1997, ApJ, 477, 821.Google Scholar
Borkowski, K., Blondin, J. M., & Sarazin, C. L. 1992, ApJ, 400, 222.Google Scholar
Borkowski, K., Szymkowiak, A. E., Blondin, J. M., & Sarazin, C. L. 1996, ApJ, 466, 866.Google Scholar
Bykov, A. M., Chevalier, R. A., Ellison, D. C., & Uvarov, Y. A. 2000, ApJ, submitted.Google Scholar
Canizares, C. R., & Winkler, P. F. 1981, ApJ, 246, L33.Google Scholar
Chevalier, R. A. 1998, Mem. Soc. Astr. Italy, 69, 977.Google Scholar
Chevalier, R. A. 1999, ApJ, 511, 798.CrossRefGoogle Scholar
Chevalier, R. A., & Liang, E. P. 1989, ApJ, 344, 332.Google Scholar
Chugai, N. N., Chevalier, R. A., Kirshner, R. P., & Challis, P. M. 1997, ApJ, 483, 925.CrossRefGoogle Scholar
de Jager, O. C., & Mastichiadis, A. 1997, ApJ, 482, 874.Google Scholar
Ensman, L., & Burrows, A. 1992, ApJ, 393, 742.CrossRefGoogle Scholar
Esposito, J.A., Hunter, S. D., Kanbach, G., & Sreekumar, P. 1996, ApJ, 461, 820.Google Scholar
Fabian, A. C., Willingale, R., Pye, J. P., Murray, S. S., & Fabbiano, G. 1980, MNRAS, 193, 175.Google Scholar
Falk, S. W. 1978, ApJ, 225, L133.Google Scholar
Fransson, C., Lundqvist, P., & Chevalier, R. A. 1996, ApJ, 461, 993.Google Scholar
Gaisser, T. K., Protheroe, R. J., & Stanev, T. 1998, ApJ, 492, 219.Google Scholar
Hasinger, G., Aschenbach, B., & Trümper, J. 1996, A&A, 312, L9.Google Scholar
Hughes, J. P. 1996, BAAS, 28, 1334.Google Scholar
Hwang, U., & Gotthelf, E. V. 1997, ApJ, 475, 665.CrossRefGoogle Scholar
Hwang, U., Hughes, J. P., & Petre, R. 1998, ApJ, 497, 833.CrossRefGoogle Scholar
Iyudin, A. F., et al. 1994, A&A, 284, L1.Google Scholar
Iyudin, A. F., et al. 1997, Nature, 396, 142.CrossRefGoogle Scholar
Keohane, J. W., Petre, R., Gotthelf, E. V., Ozaki, M., & Koyama, K. 1997, ApJ, 484, 350.Google Scholar
Kirshner, R. P., Sonneborn, G., Crenshaw, D. M., & Nassiopoulos, G. E. 1987, ApJ, 320, 602.Google Scholar
Klein, R. I., & Chevalier, R. A. 1978, ApJ, 223, L109.Google Scholar
Koyama, K., Petre, R., Gotthelf, E. V., Hwang, U., Matsuura, M., Ozaki, M., & Holt, S. S. 1995, Nature, 378, 255.CrossRefGoogle Scholar
Kurfess, J. D., et al. 1992, ApJ, 399, L137.Google Scholar
Li, H., McCray, R., & Sunyaev, R. A. 1993, ApJ, 419, 824.Google Scholar
Lundqvist, P., & Fransson, C. 1996, ApJ, 464, 924.CrossRefGoogle Scholar
Matzner, C. D., & McKee, C. F. 1999, ApJ, 510, 379.Google Scholar
McCray, R. 1993, ARA&A, 31, 175.Google Scholar
Reynolds, S. P. 1996, ApJ, 459, L13.CrossRefGoogle Scholar
Reynolds, S. P., & Chevalier, R. A. 1981, ApJ, 245, 912.Google Scholar
Sari, R., Piran, T., & Narayan, R. 1998, ApJ, 497, L17.Google Scholar
Sonneborn, G., et al. 1998, ApJ, 492, L139.Google Scholar
Sturner, S. J., Skibo, J. G., Dermer, C. D., & Mattox, J. R. 1997, ApJ, 490, 619.Google Scholar
Tanimori, T., et al. 1998, ApJ, 497, L25.CrossRefGoogle Scholar
Thielemann, F.-K., Nomoto, K., & Hashimoto, M. 1996, ApJ, 460, 408.CrossRefGoogle Scholar
Woosley, S. E., & Weaver, T. A. 1995, ApJS, 101, 181.Google Scholar