Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T10:53:56.210Z Has data issue: false hasContentIssue false

High energy cosmic photons and neutrinos

Published online by Cambridge University Press:  14 August 2015

R. J. Gould
Affiliation:
University of California, San Diego, La Jolla, California. U.S.A.
G. R. Burbidge
Affiliation:
University of California, San Diego, La Jolla, California. U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This review concentrates primarily on the problem of interpreting the recent X-ray and γ-ray observations of celestial sources. The expected fluxes of hard radiation from various processes are estimated (when possible) and are compared with the observations. We compute the synchrotron, bremsstrahlung, and (inverse) Compton spectra originating from relativistic electrons produced (via meson production) in the galaxy and intergalactic medium by cosmic ray nuclear collisions; the spectra from π°-decay are also computed. Neutron stars, stellar coronae, and supernova remnants are reviewed as possible X-ray sources. Special consideration is given to the processes in the Crab Nebula. Extragalactic objects as discrete sources of energetic photons are considered on the basis of energy requirements; special emphasis is given to the strong radio sources and the possibility of the emission of hard radiation during their formation. The problem of the detection of cosmic neutrinos is reviewed.

As yet, no definite process can be identified with any of the observed fluxes of hard radiation, although a number of relevant conclusions can be drawn on the basis of the available preliminary observational results. In particular, some cosmogonical theories can be tested.

La présente mist au point est consacrée principalement a l'interprétation des observations récentes du rayonnement X et γ des sources célestes. On estime les flux probables et on les compare aux observations. On calcule les spectres du rayonnement synchrotron, du bremsstrahlung et de l'effet Compton (inverse) par des électrons relativistes. Ces derniers seraient produits (en passant par la création de mésons) par les collisions nucléaires avec des rayons cosmiques, dans le milieu galactique et intergalactique. On calcule aussi les spectres produits par le π° decay. On envisage les possibilités d'émissions de rayons X par les étoiles à neutrons, les couronnes stellaires et les restes de supernovae. On considère plus spécialement les processus qui se produisent dans la Nébuleuse du Grabe. En se basant sur des considérations énergétiques, on étudie l'émission de photons de grande énergie par des objets extragalactiques, particulièrement les radio-sources intenses en cours de formation. La possibilité de détecter des neutrinos cosmiques est aussi envisagée.

Pour le moment, aucun processus particulier ne peut être mis en évidence dans aucun des cas où du rayonnement énergétique est observé, bien qu'un certain nombre de conclusions puisse être tiré des résultats d'observation actuellement disponibles. En particulier certaines théories cosmogoniques peuvent déjà être confrontées avec ces observations.

Резюме

Резюме

Настоящая обработка посвящеца главным образом интерпретации недавных наблюдений излучеций X и γ небесцых источников. Даны оценки вероятных потоков, которые сравнены с наблюдениями. Вычислены спектры синхротронного излучения, bremsstralhung и эффекта комп- тона (обратного) для релативистких электронов. Эти последние должно быть произведены (проходя через создание мезонов) ядерными соударениями с космическими лучами, в галактической и межгалактической средах. Вычислены также спектры произведенные распадом. Предвидены возможности эмиссий лучей X звездами из нейтронов, звездными коронами и остатками сверхновых. Более специально рассмотрены процессы происходящие в туманности Краба. Основываясь на соображениях энергетического порядка, исследована эмиссия фотонов с большой энергией внегалактическими объектами, в частности, интенсивными радиоисточниками в состоянии образования. Предвидена также возможность обнаружить космические нейтрино.

Пока что, никакой особый процесс не может быть выявлен ни в одном из случаев, когда наблюдается энергетическое излучение, хотя некоторое число заключений может быть выведено из результатов наблюдений имеющихся в настоящее время. В частности, некоторые космогонические теории могут уже быть сравнены с этими наблюдениями.

Type
Session V. X and γ Radiation : Stars and Galaxies
Copyright
Copyright © CNRS 1965 

References

Agrinier, B., Koechlin, Y., Parlier, B., Boella, G., Degli Antoni, G., Dilworth, C., Scarsi, L. and Sironi, G., 1964, Phys. Rev. Letters, 13, 377.Google Scholar
Allen, C. W., 1963, Astrophysical Quantities (London: Athlone Press).Google Scholar
Aller, L. H., 1963, The Atmospheres of the Sun and Stars, 2nd Ed. (New York: Ronald Press).Google Scholar
Arnold, J. R., Metzger, A. E., Anderson, E. C. and Van Dilla, M. A., 1962, J. Geophys. Res., 67, 4878.Google Scholar
Baade, W. and Zwicky, F., 1938, Ap. J., 88, 411.CrossRefGoogle Scholar
Bahcall, J. N., 1964, Phys. Rev. Letters, 12, 300.CrossRefGoogle Scholar
Bahcall, J. N. and Frautschi, S. C., 1964, Phys. Rev., 135, B788.Google Scholar
Bowyer, S., Byram, E. T., Chubb, T. A. and Friedman, H., 1964, Nature, 201, 1307.Google Scholar
Burbidge, E. M., Burbidge, G. R., Fowler, W. A. and Hoyle, F., 1957, Rev. Mod. Phys., 29, 647.Google Scholar
Burbidge, E. M., Burbidge, G. R. and Hoyle, F., 1963, Ap. J., 138, 873.Google Scholar
Burbidge, G. R., 1962, Ann. Rev. Nucl. Sci., 12, 507; 1958, Nuovo Cimento Suppl., 8, 403.Google Scholar
Burbidge, G. R., Burbidge, E. M. and Sandage, A. R., 1963, Rev. Mod. Phys., 35, 947.Google Scholar
Burbidge, G. R., Gould, R. J. and Pottasch, S. R., 1963, Ap. J., 138, 945.Google Scholar
Burbidge, G. R. and Hoyle, F., 1956, Nuovo Cimento, 4, 1.Google Scholar
Burgess, A. and Seaton, M. J., 1964, M. N., 127, 355.Google Scholar
Chin, H.-Y., 1964, Ann. Phys., 26, 364.Google Scholar
Chiu, H.-Y. and Salpeter, E. E., 1964, Phys. Rev. Letters, 12, 413.Google Scholar
Colgate, S., 1963, Proceedings of the Jaipur Conference. Google Scholar
Conway, R. G., Kellermann, K. J. and Long, R. J., 1963, M. N., 125, 261.Google Scholar
Cowan, C. L., Ryan, D. F. and Szydlik, P. P., 1964, Experimental Evidence for an Observable Cosmic Neutrino Signal (preprint).Google Scholar
Datt, B., 1938, Zf. f. Ap., 108, 314.Google Scholar
Davis, R. Jr., 1964, Phys. Rev. Letters, 12, 303.Google Scholar
Davis, R. D., M. N., 128, 133.Google Scholar
de Jager, C., 1960, Mém. Soc. R. Sci. Liège, 16, 280.Google Scholar
de Shong, J. A. Jr., Hildebrand, R. H. and Meyer, P., 1964, Phys. Rev. Letters, 12, 3.CrossRefGoogle Scholar
Dolan, J. F. and Fazio, G. G., 1964, The Gamma-ray Spectrum of the Sun (preprint).CrossRefGoogle Scholar
Donahue, T. M., 1951, Phys. Rev., 84, 972.Google Scholar
Duthie, J. G., Hafner, E. M., Kaplon, M. F. and Fazio, G. G., 1963, Phys. Rev. Letters, 10, 364.Google Scholar
Elwert, G., 1952, Z. Naturforsch, 7a, 202, 432; 1954, Z. Naturforsch, 9a, 637; 1961, J. Geophys. Res., Res., 66, 391.Google Scholar
Feenberg, E. and Primakoff, H., 1948, Phys. Rev., 73, 449.Google Scholar
Felten, J. E. and Morrison, P., 1963, Phys. Rev. Letters, 10, 453.CrossRefGoogle Scholar
Finzi, A., 1964a, Ap. J., 139, 774.Google Scholar
Finzi, A., 1964b, preprint.Google Scholar
Firkowski, R., Garvin, J., Maze, R. and Zawadzki, A., 1962, J. Phys. Soc. Japan, 17, Suppl. A-III, 123.Google Scholar
Fodor, L., Kövessy, Z. and Marx, G., 1964, Interstellar Neutrino Density and Cosmogony (preprint) to be published in Acta Physica Hungarica. Google Scholar
Fowler, W. A. and Hoyle, F., 1960, Ann. Phys., 10, 280; 1964, Ap. J. Suppl. 9, 91, 201.Google Scholar
Friedman, H., 1961, Space Astrophysics, ed. Liller. p. 112.Google Scholar
Fruin, J. H., Jelley, J. V., Long, C. D., Porter, N. A. and Weekes, T. C., 1964, Phys. Letters, 10, 176.Google Scholar
Giacconi, R., Gursky, H., Paolini, F. R. and Rossi, B. B., 1962, Phys. Rev. Letters, 9, 439.Google Scholar
Ginzburg, V. L., Pikelner, S. B. and Shklovsky, J. S., Astr. Zhur., 32, 503.Google Scholar
Ginzburg, V. L. and Syrovatsky, S. I., 1963, Astr. Zhur., 40, 466; 1964, Soviet Phys. J. E. T. P., 18, 245.Google Scholar
Gold, T. and Hoyle, F., 1958, Paris Symposium on Radio Astronomy, ed. Bracewell, R. N. (Stanford: Stanford Univ. Press), p. 583.Google Scholar
Goldreich, P. and Morrison, P., 1964, Soviet Phys. J. E. T. P., 18, 239.Google Scholar
Gould, R. J. and Burbidge, G. R., 1963, Ap. J., 138, 969.CrossRefGoogle Scholar
Gould, R. J., Gold, T. and Salpeter, E. E., 1963, Ap. J., 138, 408.Google Scholar
Gould, R. J. and Sciama, D. W., 1964, Ap. J., 140, 1634.Google Scholar
Hayakawa, S. and Kitao, K., 1956, Prog. Theor. Phys., 16, 139.Google Scholar
Hayakawa, S. and Matsuoka, M., 1963, Prog. Theor. Phys., 29, 612.Google Scholar
Heiles, C., 1964, Ap. J., 140, 470.Google Scholar
Heitler, W., 1954, The Quantum Theory of Radiation (London: Oxford Univ. Press).Google Scholar
House, L., 1964, Ap. J. Suppl., 8, 307 (No. 81).Google Scholar
Hoyle, F., Fowler, W. A., Burbidge, G. R. and Burbidge, E. M., 1964, Ap. J., 139, 909.Google Scholar
Jauch, J. M. and Rohrlich, F., 1955, Theory of Photons and Electrons (Cambridge, Mass : Addison-Wesley Publishing Co.).Google Scholar
Kidd, J. M., 1963, Nuovo Cimento, 27, 57.Google Scholar
Kraushaar, W. L. and Clark, G. W., 1962, Phys. Rev. Letters, 8, 106.Google Scholar
Landau, L., 1932, Physik, Zeit., Soviet Union, 1, 285; 1953, Izv. Akad. Nauk. SSSR, 17, 51.Google Scholar
Marshak, R., 1952, Meson Physics (New-York: McGraw-Hill Book Co.).Google Scholar
Misner, C. W. and Zapolsky, H. S., 1964, Phys. Rev. Letters, 12, 635.Google Scholar
Morrison, P., 1958, Nuovo Cimento, 7, 858.Google Scholar
Morton, D. C., 1964, Ap. J., 140, 460.Google Scholar
Nikishev, A. J., 1962, Soviet Phys. J. E. T. P., 14, 393.Google Scholar
O'Dell, C. R., 1962, Ap. J., 136, 809.Google Scholar
Oppenheimer, J. R. and Snyder, H., 1939, Phys. Rev., 56, 455.Google Scholar
Oppenheimer, J. R. and Volkoff, G. M., 1939, Phys. Rev., 55, 374.Google Scholar
Parker, E. N. 1963, Interplanetary Dynamical Processes (New-York: Interscience).Google Scholar
Peterson, L., 1964, J. Geophys. Res. (to be published).Google Scholar
Peterson, L. E. and Winkler, J., 1959, J. Geophy. Res. 64, 697.Google Scholar
Pollack, J. B. and Fazio, G. G., 1963, Phys. Rev., 131, 2684.Google Scholar
Pontecorvo, B., 1963, Soviet Phys. Uspekhi, 6, 1.Google Scholar
Pottasch, S. R., 1960, Ap. J., 131, 68.Google Scholar
Savedoff, M. P., 1959, Nuovo Cimento, 13, 12.Google Scholar
Sciama, D. W., 1964a, On the Formation of Galaxies and Their Magnetic Fields in a Steady State Universe (preprint) 1964b, “Cosmic X-Rays as a Tool for Exploring the Large-Scale Properties of the Universe” (preprint).Google Scholar
Sears, R. L., 1964, Ap. J., 140, 477.Google Scholar
Suga, K., Escobar, J., Clark, G., Hazan, W., Hendel, A. and Murakami, K., 1962, J. Phys. Soc. Japan, 17, Suppl. A-III, 128.Google Scholar
Weinberg, S., 1962, Phys. Rev., 128, 1457.Google Scholar
Zwicky, F., 1938, Ap. J., 88, 522.Google Scholar