Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T00:28:39.878Z Has data issue: false hasContentIssue false

The Heating of the Quiet Solar Chromosphere

Published online by Cambridge University Press:  19 July 2016

Wolfgang Kalkofen*
Affiliation:
Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, Massachussetts 02138, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The quiet solar chromosphere shows three distinct regions. Ordered according to the strength of the emission from the low and middle chromosphere they are (1) the magnetic elements on the boundary of supergranulation cells, (2) the bright points in the cell interior, and (3) the truly quiet chromosphere, also in the cell interior. The magnetic elements on the cell boundary are associated with intense magnetic fields and are heated by waves with very long periods, ranging from six to twelve minutes; the bright points are associated with magnetic elements of low field strength and are heated by (long-period) waves with periods near the acoustic cutoff period of three minutes; and the quiet cell interior, which is free of magnetic field, may be heated by short-period acoustic waves, with periods below one minute. This paper reviews mainly the heating of the bright points and concludes that the large-amplitude, long-period waves heating the bright points dissipate enough energy to account for their chromospheric temperature structure.

Type
VI. Chromospheric and Coronal Heating
Copyright
Copyright © Kluwer 1990 

References

Anderson, L. S. & Athay, R. G. 1989. Chromospheric and coronal heating. Astrophys. J. 336:10891091.CrossRefGoogle Scholar
Athay, R. G. 1976. The Solar Chromosphere and Corona, Reidel Publ. Co., Dordrecht.Google Scholar
Ayres, T. R. 1981. Thermal bifurcation in the solar outer atmosphere. Astrophys. J. 244:10641071.Google Scholar
Bappu, M. K. V. & Sivaraman, K. R. 1971. K Emission-Line Widths and the Solar chromosphere. Solar Phys. 17:316330.Google Scholar
Biermann, L. 1946. Zur Deutung der chromosphärischen Turbulenz und des Exzesses der UV-Strahlung der Sonne. Naturwissenschaften, 33:118119.Google Scholar
Biermann, L. 1948. Über die Ursache der chromosphärischen Turbulenz und des UV-Exzesses der Sonnenstrahlung. Z. Astrophysik 25:161177.Google Scholar
Bray, R. J. & Loughhead, R. E. 1974. The Solar Chromosphere (London: Chapman and Hall).Google Scholar
Cram, L. 1974. High resolution spectroscopy of the disk chromosphere. Solar Phys. 37:7583.Google Scholar
Cram, L. 1987. In: Cool Stars, Stellar Systems, and the Sun, eds. Linsky, J. L. and Stencel, R. E. (Berlin: Springer Verlag), pp 123134.Google Scholar
Cram, L. E. & Damé, L. 1983. High spatial and temporal resolution observations of the solar Ca II H line. Astroph. J. 272:355361.Google Scholar
Damé, L. 1983. Eruptions solaires en lumière blanche et structures fines, oscillations et chauffage de la chromosphère solaire calme. Thèse, Université de Paris VII.Google Scholar
Damé, L. 1984. Small-scale dynamical processes in the solar atmosphere. In: Small-Scale Dynamical Processes in Quiet Stellar Atmospheres, ed. Keil, S. L. (Sacramento Peak), pp 5464.Google Scholar
Deubner, F.-L. 1988. Observations of solar oscillations. In: Pulsation and Mass Loss in Stars, eds. Stalio, R. and Willson, L. A. (Dordrecht: Kluwer Acad. Publ.), pp 163179.CrossRefGoogle Scholar
Deubner, F.-L. & Fleck, B. 1989. Dynamics of the solar atmosphere III. Cell-network distinctions of chromospheric oscillations. preprint.Google Scholar
Foing, B. & Bonnet, R. M. 1984. On the origin of the discrete character of the solar disk brightness in the 160 nanometer continuum. Astrophys. J. 279:848856.Google Scholar
Gingerich, O., Noyes, R. W., Kalkofen, W. & Cuny, Y. 1971. The Harvard-Smithsonian Reference Atmosphere. Solar Phys. 18:347365.Google Scholar
Grossmann-Doerth, U., Kneer, F. & v. Uexküll, M. 1974. Properties of the Solar Ca II K Line in High Spatial Resolution. Sol. Phys. 37:8597.CrossRefGoogle Scholar
Jensen, E. & Orrall, F. Q. 1963. Observational study of macroscopic inhomogeneities in the solar atmosphere. IV. Velocity and intensity fluctuations observed in the K line. Astrophys. J. 138:252270.CrossRefGoogle Scholar
Kalkofen, W. 1989. Chromospheric heating. Astrophys. J. (Letters) 346:L3740.CrossRefGoogle Scholar
Lamb, H. 1908. On the theory of waves propagated vertically in the atmosphere. Proc. London Math. Soc. (2) 7:122141.Google Scholar
Leibacher, J. & Stein, R. F. 1981. Oscillations and pulsations. In: The Sun as a Star, ed. Jordan, S. D. (Nasa: Monograph Series on Nonthermal Phenomena in Stellar Atmospheres), pp 263287.Google Scholar
Leibacher, J., Gouttebroze, P. & Stein, R. F. 1982. Solar atmospheric dynamics. II. Nonlinear models of the photospheric and chromospheric oscillations. Astrophys. J. 258:393403.Google Scholar
Lindsey, C. A. 1981. Heating of the solar chromosphere by ionization pumping. Astrophys. J. 244:659677.CrossRefGoogle Scholar
Lindsey, C. & Roellig, T. 1987. Submillimeter diagnostics of the response of the solar chromosphere to compressional waves. Astroph. J. 313:877892.Google Scholar
Lites, B. W., Chipman, E. G. & White, O. R. 1982. The vertical propagation of waves in the solar atmosphere. II. Phase delays in the quiet chromosphere and cell-network distinctions. Astrophys. J. 253:367385.Google Scholar
Liu, S.-Y. 1974. Direct observational evidence for the propagation and dissipation of energy in the chromosphere. Astroph. J. 189:359365.Google Scholar
Orrall, F. Q., 1966. Observational study of macroscopic inhomogeneities in the solar atmosphere VIII. Vertical chromospheric oscillations measured in K3 . Astroph. J. 143:917927.Google Scholar
Piddington, J. H. 1974. The Chromospheric Energy Balance. In: I.A.U. Symp. No. 56, Chromospheric Fine Structure, ed. Athay, R. G. (Dordrecht: Reidel Publ. Co.), p 269.Google Scholar
Rae, I. C. & Roberts, B. 1982. Pulse Propagation in a Magnetic Flux Tube. Astroph. J. 256:761767.Google Scholar
Schatzman, E. & Souffrin, P. 1967. Waves in the solar atmosphere. Ann. Rev. Astron. Astroph. 5:6784.CrossRefGoogle Scholar
Schrijver, C. J. 1987. Heating of stellar chromospheres and coronae: evidence for non-magnetic heating. In: Cool Stars, Stellar Systems, and the Sun, eds. Linsky, J. L. and Stencel, R. E. (Berlin: Springer Verlag), pp 135144.Google Scholar
Schwarzschild, M. 1948. On noise arising from solar granulation. Astrophys. J. 107:15.CrossRefGoogle Scholar
Sivaraman, K. R. & Livingston, W. C. 1982. Ca II K2v spectral features and their relation to small-scale photospheric magnetic fields. Sol. Phys. 80:227231.Google Scholar
Sivaraman, K. R., Bagare, S.P. & November, L.J. 1989. cf. paper in proceedings of this I.A.U. symposium.Google Scholar
Spruit, H. C. 1981. Magnetic flux tubes. In: the Sun as a Star, ed. Jordan, S. (Nasa: Monograph Series on Nonthermal Phenomena in Stellar Atmospheres), pp 385412.Google Scholar
Stein, R. F. 1967. Generation of Acoustic and Gravity Waves by Turbulence in an Isothermal Stratified Atmosphere. Solar Phys. 2:385432.Google Scholar
Stein, R. F. 1968. Waves in the solar atmosphere. I. The acoustic energy flux. Astrophys. J. 154:297306.Google Scholar
Stein, R. F. & Leibacher, J. 1974. Waves in the solar atmosphere. In: Ann. Rev. Astron. Astroph. 12:407435.Google Scholar
Stein, R. F. & Leibacher, J. 1981. Wave generation. In: The Sun as a Star, ed. Jordan, S. D. (Nasa: Monograph Series on Nonthermal Phenomena in Stellar Atmospheres), pp 289300.Google Scholar
Stenflo, J. O. 1989. Small-Scale Magnetic Structures on the Sun. The Astron. and Astroph. Rev.,. subm.CrossRefGoogle Scholar
Ulmschneider, P. 1970. On Frequency and Strength of Shock Waves in the Solar Atmosphere. Solar Phys. 12:403415.Google Scholar
Ulmschneider, P. 1974. Radiative Loss and Mechanical Heating in the Solar Chromosphere. Solar Phys. 39:327336.Google Scholar
Ulmschneider, P. 1986. The present state of wave heating theories of stellar chromospheres. Adv. Space Res. Vol. 6, No. 8, pp 3946.CrossRefGoogle Scholar
Ulmschneider, P. 1990. cf. proceedings of the 1989 Cool Star Conference, Seattle, WA.Google Scholar
Ulmschneider, P. & Kalkofen, W. 1977. Acoustic waves in the solar atmosphere III. A theoretical temperature minimum. Astron. & Astroph. 57:199209.Google Scholar
Vernazza, J. E., Avrett, E. H. & Loeser, R. 1981. Structure of the solar chromosphere III. Models of the EUV brightness components of the quiet sun. Astroph. J. Suppl. 45:635725 (VAL81).Google Scholar
Zirin, H. 1988. Astrophysics of the Sun (Cambridge: Cambridge University Press).Google Scholar