Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T20:57:39.876Z Has data issue: false hasContentIssue false

Gravothermal Oscillations

Published online by Cambridge University Press:  25 May 2016

Junichiro Makino*
Affiliation:
Department of Graphics and Information Science, College of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153, Japan

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the first clear evidence that the gravothermal oscillation takes place in N-body systems. We performed direct N-body simulations of systems of point-mass particles with particle numbers from 2,048 to 32,768. In the simulation with 32,768 particles, the central density shows an oscillation with an amplitude of ∼ 103, which is similar to what was observed in more approximate models such as a conducting gas sphere and one-dimensional Fokker-Planck calculations. The amplitude is smaller for a smaller number of particles. The number of particles in the core at the maximum contraction is ∼ 10 for all runs, while the number of particles at the maximum expansion is about 0.01N. For 16,384- and 32,768-body runs, the temperature inversion during the expansion phase is clearly visible.

Type
Large N-body Simulation
Copyright
Copyright © Kluwer 1996 

References

Aarseth, S. J. (1985) in Multiple Time Scales, eds. Brackhill, J. U. and Cohen, B. I., Academic, New York, p. 377.Google Scholar
Bettwieser, E. (1985) in Dynamics of Star Clusters, IAU Symposium No. 113, eds. Goodman, J. and Hut, P., Reidel, Dordrecht, p. 219.Google Scholar
Bettwieser, E. and Sugimoto, D. (1984) MNRAS 208, 493.Google Scholar
Casertano, S. and Hut, P. (1985) Ap. J. 298, 80.CrossRefGoogle Scholar
Cohn, H., Hut, P., and Wise, M. (1989) Ap. J. 342, 814.Google Scholar
Giersz, M. and Heggie, D. (1994) MNRAS 268, 257.Google Scholar
Goodman, J. (1984) Ap. J. 280, 298.Google Scholar
Goodman, J. (1987) Ap. J. 313, 576.Google Scholar
Goodman, J. and Hut, P. (1989) Nature 339, 40.CrossRefGoogle Scholar
Hachisu, I., Nakada, Y., Nomoto, K., and Sugimoto, D. (1978) Prog. Theor. Phys. 60, 393.CrossRefGoogle Scholar
Heggie, D. (1986) in The Use of Supercomputers in Stellar Dynamics, eds. McMillan, S. and Hut, P., Springer, New York, p. 233.Google Scholar
Heggie, D. and Ramamani, N. (1989) MNRAS 237, 757.Google Scholar
Heggie, D., Inagaki, S., and McMillan, S.L.W. (1994) MNRAS 271, 706.Google Scholar
Kustaanheimo, P., and Stiefel, E. (1965) J. Reine. Angew. Math. 218, 204.Google Scholar
Lynden-Bell, D. and Eggleton, P.P. (1980) MNRAS 191, 483.Google Scholar
Makino, J. (1986) in The Use of Supercomputers in Stellar Dynamics, eds. McMillan, S. and Hut, P., Springer, New York, p. 151.Google Scholar
Makino, J. (1991) Publ. Astron. Soc. Japan 43, 841.Google Scholar
Makino, J. and Aarseth, S. J. (1992) Publ. Astron. Soc. Japan 44, 141.Google Scholar
Makino, J. and Sugimoto, D. (1987) Publ. Astron. Soc. Japan 39, 589.Google Scholar
Mardling, R. A. (1995a) Ap. J. 450, 722.CrossRefGoogle Scholar
Mardling, R. A. (1995b) Ap. J. 450, 732.Google Scholar
McMillan, S. L. W. (1986) in The Use of Supercomputers in Stellar Dynamics, eds. McMillan, S. and Hut, P., Springer, New York, p. 156.Google Scholar
McMillan, S. L. W. and Engle, E. A. (1995) in this volume.Google Scholar
McMillan, S. L. W., Hut, P. and Makino, J. (1990) Ap. J. 362, 522.CrossRefGoogle Scholar
Spurzem, R. and Aarseth, S. J. (1996) preprint.Google Scholar
Sugimoto, D. and Bettwieser, E. (1983) MNRAS 204, 19p.Google Scholar
Takahashi, K. and Inagaki, S. (1991) Publ. Astron. Soc. Japan 43, 589.Google Scholar
Taiji, M. (1995) in this volume.Google Scholar