Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-12T19:42:53.607Z Has data issue: false hasContentIssue false

Gravitational Lenses and Dark Matter: Theory

Published online by Cambridge University Press:  04 August 2017

J. Richard Gott III*
Affiliation:
Princeton University Observatory, Princeton, NJ 08544 USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In principal, gravitational lenses can be used to study dark matter in a variety of ways. They can provide information on masses of lensing galaxies, circular velocities in halos, the value of Ω in condensed objects, and the constitution of heavy halos (whether they are made of low mass stars or not). They can tell us whether mass and light are distributed equally, provide insights on mass in groups of galaxies and on exotic dark matter such as strings and non zero Λ. As an example, the existance of the normal lens case QSO 2016 with zQ = 3.27 allows one to set the limit qo > −2.3.

Type
Review Paper
Copyright
Copyright © Reidel 1987 

References

1. Turner, E.L., Ostriker, J.P., Gott, J.R. 1984, Ap. J. 284, 1.Google Scholar
2. Tyson, J.A., Valdes, F., Jarvis, J.F. and Mills, A.P. 1984, Ap. J. 281, L59.CrossRefGoogle Scholar
3. Turner, E.L. 1976, Ap. J. 208, 304.Google Scholar
4. Yahil, A. 1977, Ap. J. 217, 27.Google Scholar
5. White, S.D.M. 1981, M.N.R.A.S. 195, 1037.Google Scholar
6. Press, W.H. and Gunn, J.E. 1973, Ap. J. 185, 397.CrossRefGoogle Scholar
7. Gott, J.R. 1981, Ap. J. 243, 140.Google Scholar
8. Chang, K. and Refsdal, S. 1979, Nature 282, 561.Google Scholar
9. Canizares, C.R. 1982, Ap. J. 263, 508.Google Scholar
10. Young, P. 1981, Ap. J. 244, 756.Google Scholar
11. Narasimha, D., Subramanian, K. and Chitre, S.M. 1984, M.N.R.A.S. 210, 79.Google Scholar
12. Ostriker, J.P., Vietri, M. 1985 (preprint).Google Scholar
13. Paczynski, B. 1985 (preprint).Google Scholar
14. Chang, K. and Refsdal, S. 1984, Astron. Astrophys, 132, 168.Google Scholar
15. Burke, W.L. 1981, Ap. J. 244, L1.CrossRefGoogle Scholar
16. Gott, J.R., Gunn, J.E., Schramm, D.N., Tinsley, B. 1974, Ap. J. 194, 543.Google Scholar
17. Refsdal, S. 1964, M.N.R.A.S. 128, 307.CrossRefGoogle Scholar
18. Borgeest, U. and Refsdal, S. 1984, Astron. Astrophysics 141, 318.Google Scholar
19. Young, P., Gunn, J.E., Kristian, J., Oke, J.B., Westphal, J.A. 1981, Ap. J. 244, 736.Google Scholar
20. Falco, E.E., Gorenstein, M.V., Shapiro, I.I. 1985, Ap. J. 289, L1.Google Scholar
21. Alcock, C., Anderson, N. 1985, Ap. J. 291, L29.CrossRefGoogle Scholar
22. Narayan, R., Blandford, R., Nityananda, R. 1985 (preprint).Google Scholar
23. Hammer, F. and Nottale, L. 1985 (preprint).Google Scholar
24. Gott, J.R. 1985, Ap. J. 288, 422.CrossRefGoogle Scholar
25. Vilenkin, A. 1981, Phys. Rev. D. 23, 852.Google Scholar
26. Kaiser, N. and Stebbins, A. 1984, Nature, 310, 391.Google Scholar
27. Hogan, C., Rees, M.J. 1985 (preprint) Google Scholar
28. Paczynski, B. and Gorski, K. 1981, Ap. J. 248, L101.Google Scholar
29. Alcock, C., Anderson, N. 1985 (preprint).Google Scholar
30. Gott, J.R., Park, M-G. 1985 (preprint).Google Scholar
31. Paczynski, B. 1985 (comment later in this meeting).Google Scholar
32. Davis, M. and Peebles, P.J.E. 1983, Ap. J. 267, 465.CrossRefGoogle Scholar
33. Lawrence, C.R., Schneider, D.P., Schmidt, M., Bennett, J.N., Hewitt, B., Burke, B.F., Turner, E.L. and Gunn, J.E. 1984 Science 223, 46.Google Scholar