Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T04:18:13.075Z Has data issue: false hasContentIssue false

Gravitational Collapse

Published online by Cambridge University Press:  07 February 2017

R. Penrose*
Affiliation:
University of Oxford, England

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the standard picture of gravitational collapse to a black hole, a key role is played by the hypothesis of cosmic censorship – according to which no naked space-time singularities can result from any collapse. A precise definition of a naked singularity is given here which leads to a strong ‘local’ version of the cosmic censorship hypothesis. This is equivalent to the proposition that a Cauchy hypersurface exits for the space-time. The principle that the surface area of a black hole can never decrease with time is presented in a new and simplified form which generalizes the earlier statements. A discussion of the relevance of recent work to the naked singularity problem is also given.

Type
Part II: Stability and Collapse
Copyright
Copyright © Reidel 1974 

References

Carter, B.: 1971, Phys. Rev. Letters 26, 331.CrossRefGoogle Scholar
Chandrasekhar, S.: 1974, this volume, p. 63.CrossRefGoogle Scholar
Geroch, R.: 1970, J. Math. Phys. 11, 437.CrossRefGoogle Scholar
Geroch, R., Kronheimer, E. H., and Penrose, R.: 1972, Proc. Roy. Soc. London A327, 545.Google Scholar
Gibbons, G.: 1973, to appear.Google Scholar
Grischuk, L. P.: 1967, Sov. Phys. J.E.T.P. 24, 320.Google Scholar
Hagerdorn, R.: 1968, Nuovo Cimento 56A, 1027.CrossRefGoogle Scholar
Hawking, S. W.: 1972, Comm. Math. Phys. 25, 152.CrossRefGoogle Scholar
Hawking, S. W. and Ellis, G. F. R.: 1973, The Large Scale Structure of Space-Time, Cambridge Univ. Press.CrossRefGoogle Scholar
Hawking, S. W. and Penrose, R.: 1970, Proc. Roy. Soc. London A314, 529.Google Scholar
Israel, W.: 1967, Phys. Rev. 164, 1776.CrossRefGoogle Scholar
Misner, C. W.: 1974, this volume, p. 3.CrossRefGoogle Scholar
Müller zum Hagen, H., Robinson, D. C., and Seifert, H.-J.: 1972, Gen. Relativity and Gravitation 4, 1, 53.CrossRefGoogle Scholar
Müller zum Hagen, H., Seifert, H.-J., and Yodzis, P.: 1973, Comm. Math. Phys. 34, 135.Google Scholar
Newman, E. T. and Penrose, R.: 1968, Proc. Roy. Soc. London A305, 175.Google Scholar
Penrose, R.: 1968, in De Witt, C. M. and Wheeler, J. A. (eds.), Battelle-Rencontres, Benjamin, New York.Google Scholar
Penrose, R.: 1969, Rivista del Nuovo Cimento, Ser. 1, 1, Num. Spec. 252.Google Scholar
Penrose, R.: 1972, Techniques of Differential Topology in Relativity, S.I.A.M., Philadelphia.CrossRefGoogle Scholar
Penrose, R.: 1974a, Ann., N.Y. Acad. Sci. 224, 125.CrossRefGoogle Scholar
Penrose, R.: 1974b, in Longair, M. S. (ed.), ‘Confrontation of Cosmological Theories with Observational Data’, IAU Symp. 63, in press.Google Scholar
Press, W. H.: 1974, this volume, p. 93.CrossRefGoogle Scholar
Seifert, H.-J.: 1971, Gen. Relativity Gravitation 1, 247.CrossRefGoogle Scholar
Simpson, M. and Penrose, R.: 1973, Int. J. Theor. Phys. 7, 183.CrossRefGoogle Scholar
Teukolsky, S.: 1974, this volume, p. 92.CrossRefGoogle Scholar