Published online by Cambridge University Press: 26 May 2016
Low mass circumstellar disks are a result of the star formation process. The growth of dust and solid planets in such pre-planetary disks determines many properties of our solar system. Models of the Solar System giant planets indicate an enrichment of heavy elements and imply heavy element cores. Detailed models therefore describe giant planet formation as a consequence of the formation of solid planets that have grown sufficiently large to permanently bind gas from the protoplanetary nebula. The diversity of Solar System and extrasolar giant planets is explained by variations in the core growth rates caused by a coupling of the dynamics of planetesimals and the contraction of the massive envelopes they dive into, as well as by changes in the hydrodynamical accretion behavior of the envelopes resulting from differences in nebula density, temperature and orbital distance. Detailed formation models are able to determine observables as luminosities, radii and effective temperatures of young giant planets. Present observational techniques do now allow to probe star formation regions at ages covering all evolutionary stages of the giant planet formation process.