Hostname: page-component-cc8bf7c57-n7qbj Total loading time: 0 Render date: 2024-12-12T07:58:10.062Z Has data issue: false hasContentIssue false

Gas Mixing, Gas Cycles and the Chemical Evolution of Dwarf Irregular Galaxies

Published online by Cambridge University Press:  26 May 2016

Gerhard Hensler
Affiliation:
Institute of Astronomy, University Observatory, Türkernschanzstr. 17, A-1080 Vienna, Austria Institute of Theoretical Physics and Astrophysics, University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
Joachim Köppen
Affiliation:
Institute of Theoretical Physics and Astrophysics, University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany UMR 7550, Observatoire Astronomique de Strasbourg, 11 rue de l'Universit, F-67000 Strasbourg, France
Jan Pflamm
Affiliation:
Institute of Astronomy, University Observatory, Türkernschanzstr. 17, A-1080 Vienna, Austria
Andreas Rieschick
Affiliation:
Institute of Theoretical Physics and Astrophysics, University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dwarf galaxies are ideal laboratories to study influential effects on galaxy evolution. In particular, their gas-rich variant with very active star formation, starbursting dwarf irregulars, shows chemical and structural signatures that lead unambiguously to the conclusion that they are standing in a vital contact with their surroundings. Gas infall cannot only trigger star formation but also allows for a reduction of the metal content. on the other hand, active star formation ignites numerous supernovae type II which accumulate and can produce a galactic wind. This again depletes the metals pushing them into a gas mixing cycle with different timescales, locally of about 10 Myrs, but an galactic scales of at least 1 Gyr. This paper illuminates the different processes like gas infall and outflow and their effects on the chemical evolution, the star formation, and the gas mixing in dwarf irregular galaxies.

Type
Part 2. Origin
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Aloisi, A., Tosi, M., & Greggio, L. 1999, AJ, 118, 302.CrossRefGoogle Scholar
Babul, A. & Rees, M.J. 1992, MNRAS, 255, 346.CrossRefGoogle Scholar
Bradamante, F., Matteucci, F., & D'Ercole, A. 1998, A&A, 337, 338.Google Scholar
Burkert, A. 1995, ApJ, 447, L25.CrossRefGoogle Scholar
Ferrara, A. & Tolstoy, E. 2000, MNRAS, 313, 291.CrossRefGoogle Scholar
Garnett, D.R. 1990, ApJ, 360, 142.CrossRefGoogle Scholar
Garnett, D.R. 2002, ApJ, 581, 1019.CrossRefGoogle Scholar
Heckman, T.M., Dahlem, M., Lehnert, M.D., et al. 1995, ApJ, 448, 98.CrossRefGoogle Scholar
Henry, R.B.C., Edmunds, M.G., & Köppen, J. 2000, ApJ, 541, 660 (HEK).CrossRefGoogle Scholar
Hensler, G. & Köppen, J. 2004, A&A, in prep.Google Scholar
Hensler, G. & Rieschick, A. 2002, in ASP Conf. Ser. Vol. 285, Modes of Star Formation, ed. Grebel, E. & Brandner, W., (San Francisco: ASP), 341.Google Scholar
Hensler, G., Dickow, R., Junkes, N., Gallagher, J.S. 1998, ApJ, 502, L17.CrossRefGoogle Scholar
Hensler, G., Recchi, S., Köppen, J., Rieschick, A. 2004, in Highlights of Astronomy, Vol. 13, ed. Engvold, O., in press.CrossRefGoogle Scholar
Hensler, G., Rieschick, A., & Köppen, J. 1999, in ASP Conf. Ser. Vol. 187, The Evolution of Galaxies on Cosmological Timescales, ed. Beckman, J. & Mahoney, T.J., (San Francisco: ASP), 214.Google Scholar
Hensler, G., Theis, C., & Gallagher, J.S. III 2003, A&A, submitted.Google Scholar
Hodge, P.W. 1989, ARA&A, 27, 139.Google Scholar
Hunt, L., Thuan, T.X., & Izotov, Y.I. 2003, ApJ, 588, 281.CrossRefGoogle Scholar
Izotov, J., & Thuan, T.X.T. 1999, ApJ, 511, 639.CrossRefGoogle Scholar
Kobulnicky, H.A., & Zaritzky, D. 1999, ApJ, 511, 113.CrossRefGoogle Scholar
Köppen, J., Theis, C., & Hensler, G. 1995, A&A, 296, 99.Google Scholar
Köppen, J., Theis, C., & Hensler, G. 1998, A&A, 328, 121.Google Scholar
Kunth, D. & Sargent, W.L.W. 1986, ApJ, 300, 496.CrossRefGoogle Scholar
MacLow, M.-M. & Ferrara, A. 1999, ApJ, 513, 142.CrossRefGoogle Scholar
Marconi, G., Matteucci, F., & Tosi, M. 1994, MNRAS, 270, 35.CrossRefGoogle Scholar
Marlowe, A.T., Heckman, T.M., Wyse, R.F.G., Schommer, R. 1995, ApJ, 438, 563.CrossRefGoogle Scholar
Martin, C.L. 1999, ApJ, 513, 156.CrossRefGoogle Scholar
Martin, C.L., Kobulnicky, H.A., & Heckman, T.M. 2002, ApJ, 574, 663.CrossRefGoogle Scholar
Matteucci, F. & Tosi, M. 1995, MNRAS, 217, 391.CrossRefGoogle Scholar
Meurer, G.R., Freeman, K.C., Dopita, M.A., et al. 1992, AJ, 103, 60.CrossRefGoogle Scholar
Pagel, B.E.P. 1985, in “Production and Distribution of C,N,O Elements”, ed. Danziger, I.J., Matteucci, F., & Kjär, K., 155.Google Scholar
Pagel, B.E.J., 1997, Nucleosynthesis and Chemical Evolution of Galaxies, Cambridge University Press.Google Scholar
Pflamm, J., Hensler, G., & Köppen, J., 2004, A&A, in prep.Google Scholar
Pilyugin, L.S. 1992, A&A, 260, 58.Google Scholar
Rieschick, A., & Hensler, G. 2000, in ASP Conf. Ser. Vol. 215, Proc. III. Haro Conf., Cosmic Evolution and Galaxy Formation: Structure, Interactions, and Feedback, ed. Franco, J. et al., (San Francisco: ASP), 130.Google Scholar
Rieschick, A., & Hensler, G. 2003, A&A, submitted.Google Scholar
Skillman, E.D., Bomans, D.J., & Kobulnicky, H.A. 1997, ApJ 474, 205.CrossRefGoogle Scholar
Smecker-Hane, T.A., Stetson, P.B., Hesser, J.E., et al., 1994, AJ, 108, 507.CrossRefGoogle Scholar
Stil, J.M. & Israel, F.P. 2003, A&A, 392, 473.Google Scholar
Suchkov, A.A., Balsara, D.S., Heckman, T.M., Leitherer, C. 1994, ApJ, 430, 511.CrossRefGoogle Scholar
Tenorio-Tagle, G. 1996, AJ, 111, 1641.CrossRefGoogle Scholar
Tosi, M., Sabbi, E., Bellazzini, M., et al. 2001, AJ, 122, 1271.CrossRefGoogle Scholar
van Zee, L. 2001, AJ, 121, 2003.CrossRefGoogle Scholar
van Zee, L., Salzer, J.J., Haynes, M.P. 1998a, ApJ, 497, L1.CrossRefGoogle Scholar
van Zee, L., Westphal, D., Haynes, M.P., Salzer, J.J. 1998b, AJ, 115, 1000.CrossRefGoogle Scholar