Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T04:59:01.910Z Has data issue: false hasContentIssue false

Galactic Kinematics on the Basis of Modern Proper Motion Data

Published online by Cambridge University Press:  07 August 2017

M. Miyamoto*
Affiliation:
National Astronomical Observatory Mitaka, Tokyo 181, Japan

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An accumulation of high precision astrometric data in conjunction with high-precision monitoring of the Earth's orientation, motivates “Galactic Astronomy”. As regards local kinematics, all of the three components of both the vorticity and the shear of stars can be completely determined, in addition to the velocity ellipsoid. We can now be released from the constraint of the “axisymmetric” galaxy. The determination of the proper motion of the LMC will be crucial to understanding the global structure and dynamics of the Galaxy with the dark halo and MACHO's motions.

Type
2. Current and Future Needs for Very Accurate Astrometry
Copyright
Copyright © Kluwer 1995 

References

Bien, R., Fricke, W. and Schwan, H. (1978) Veröff. Astron. Rechen-Institut Heidelberg, No. 29.Google Scholar
Blitz, L. (1979) ApJ, 231, L115.CrossRefGoogle Scholar
Brand, J. and Blitz, L. (1993) A&A, 275, 67.Google Scholar
Brosche, P. (1966) Veröff. Astron. Rechen-Institut Heidelberg, No. 17.Google Scholar
Corbin, T.E. and Urban, S.E. (1991) Astrographic Catalogue Reference Stars (ACRS), U.S. Naval Observatory.Google Scholar
Fricke, W. (1977) Veröff. Astron. Rechen-Institut Heidelberg, No. 28.Google Scholar
Fricke, W., Schwan, H. and Lederle, T. (1988) Veröff. Astron. Rechen-Institut Heidelberg, No. 32.Google Scholar
Hartwick, F.D.A. and Sargent, W.L.W. (1978) ApJ, 221, 512.Google Scholar
Jones, B.F., Klemola, A.R. and Lin, D.N.C. (1994) AJ, 107, 1333.CrossRefGoogle Scholar
Kroupa, P., Röser, S. and Bastian, U. (1994) MNRAS, 266, 412.Google Scholar
Lieske, J.H., Lederle, T., Fricke, W. and Morando, B. (1977) A&A, 58, 1.Google Scholar
Lin, D.N.C. and Lynden-Bell, D. (1977) MNRAS, 181, 59.Google Scholar
Lin, D.N.C. and Lynden-Bell, D. (1982) MNRAS, 198, 707.CrossRefGoogle Scholar
Lynden-Bell, D., Cannon, R.D. and Godwin, P.J. (1983) MNRAS, 204, 87p.Google Scholar
McCarthy, D.D. and Luzum, B.J. (1991), AJ, 102, 1889.Google Scholar
Miyamoto, M., Satoh, C. and Ohashi, M. (1980) A&A, 90, 215.Google Scholar
Miyamoto, M. and Sôma, M. (1993) AJ, 105, 691 (Paper I).Google Scholar
Miyamoto, M., Soma, M. and Yoshizawa, M. (1993), AJ, 105, 2138.Google Scholar
Miyamoto, M. and Soma, M. (1994) to be published. Google Scholar
Murai, T. and Fujimoto, M. (1980) PASJ, 32, 581.Google Scholar
Murray, C.A. (1983) Vectorial Astrometry, Adam Hilger Ltd, Bristol.Google Scholar
Trumpler, R.J. and Weaver, H.F. (1953) Statistical Astronomy, Univ. California Press.Google Scholar
Tsujimoto, T. and Miyamoto, M. (1994) to be published. Google Scholar
Williams, J.G., Newhall, X.X. and Dickey, J.O. (1991) A&A, 241, L9.Google Scholar