Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T15:37:13.121Z Has data issue: false hasContentIssue false

The Formation of Globular Clusters and of The Stars Within Them

Published online by Cambridge University Press:  25 May 2016

D.N.C. Lin
Affiliation:
Lick Observatory, Univ. of California, Santa Cruz, CA 95064
S.D. Murray
Affiliation:
Lawrence Livermore Nat'l Lab., L-23, Livermore, CA 94550

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We propose that proto-globular cluster clouds form in a collapsing protogalactic cloud as a consequence of thermal instability. The clouds are photoionized and heated by nearby massive stars. Most are not self-gravitating, but are confined by the residual hot gas in the protogalactic cloud. Their masses evolve as they undergo cohesive collisions with each other and erosion due to interaction with the residual halo gas. Collisions may also trigger thermal instability and fragmentation within protocluster clouds. The resulting cloudlets are pressure confined, and fall toward the center of the protocluster cloud due to inverse buoyancy. Their mass distribution is also regulated by coagulation and erosion. While most cloudlets have substellar masses, the largest become self-gravitating, and collapse to form protostellar cores without further fragmentation. The initial stellar mass function is established as these cores capture additional residual cloudlets. Energy dissipation from the mergers ensures that the cluster will remain bound in the limit of low star formation efficiency. Dissipation also promotes the formation and retention of the most massive stars in the cluster center.

Type
Galactic Connection and Environmental Effect
Copyright
Copyright © Kluwer 1996 

References

Aarseth, S.J., Lin, D.N.C., & Papaloizou, J.C.B. 1988, ApJ, 324, 288 Google Scholar
Binney, J. J. 1977, ApJ, 215, 483 Google Scholar
Blumenthal, G. R., Faber, S. M., Primack, J. R., & Rees, M. J. 1984, Nature, 311, 517 Google Scholar
Bonner, W. B. 1956, MNRAS, 116, 356 Google Scholar
Capaccioli, M., Ortolani, S., & Piotto, G. 1991, A&A, 244, 298 Google Scholar
Caselli, P. & Myers, P.C. 1995, ApJ, 446, 665 Google Scholar
Dalgarno, A., & McCray, R. A. 1972, ARAA, 10, 375 Google Scholar
Fall, S. M., & Rees, M. J. 1985, ApJ, 298, 18 Google Scholar
Field, G. B. 1965, ApJ, 142, 531 Google Scholar
Francic, S. P. 1989, AJ, 98, 888 Google Scholar
Goodman, A.A., Jones, T.J., Lada, E.A., Myers, P.C. 1995, ApJ 448, 748 Google Scholar
Greene, T.P., Wilking, B.A., André, P., Young, E., & Lada, C.J. 1994, ApJ, 434, 614 Google Scholar
Heiles, C., Goodman, A.A., & McKee, C.F. 1993 in Protostars and planet III, eds. Levy, E. H. & Lunine, J. I. (Tucson: Univ. Arizona Press), 279 Google Scholar
Holtzman, J. A., et al. 1992, AJ, 103, 691 Google Scholar
Hoyle, F. 1953, ApJ, 118, 513 Google Scholar
Hunter, C. 1962, ApJ, 136, 594 Google Scholar
Kwan, J. 1979, ApJ, 229, 567 Google Scholar
Lada, C. J., Lada, E. A., Clemens, D. P., & Bally, J. 1994, ApJ, 429, 694 Google Scholar
Lada, C. J., Margulis, M., & Dearborn, D. 1984, ApJ, 285, 141 CrossRefGoogle Scholar
Lada, E. A. 1992, ApJL, 1992, 393, L25 Google Scholar
Lada, E. A., DePoy, D. L., Evans, N. J., & Gatley, I. 1991, ApJ, 371, 171 Google Scholar
Lada, E.A. & Lada, C.J. 1995, AJ, 109, 1684 Google Scholar
Larson, R. B. 1981, MNRAS, 194, 809 Google Scholar
Lin, D. N. C., & Murray, S. D. 1992, ApJ, 394, 523 Google Scholar
Low, C., & Lynden-Bell, D. 1976, MNRAS, 176, 367 Google Scholar
McKee, C. F., & Cowie, L. L. 1977, ApJ, 215, 213 Google Scholar
Miller, G. E., & Scalo, J. M. 1979, ApJS, 41, 513 Google Scholar
Murray, S. D., & Lin, D. N. C. 1989, ApJ, 339, 933 Google Scholar
Murray, S. D., & Lin, D. N. C. 1990, ApJ, 357, 105 Google Scholar
Murray, S. D., & Lin, D. N. C. 1992, ApJ, 400, 265 CrossRefGoogle Scholar
Murray, S. D., & Lin, D. N. C. 1996, ApJ, submitted Google Scholar
Murray, S. D., White, S. D. M., Blondin, J. M., & Lin, D. N. C. 1993, ApJ, 407, 588 Google Scholar
Nakano, T. 1966, Prog. Theor. Phys., 36, 515 CrossRefGoogle Scholar
Noriega-Crespo, A. Bodenheimer, P. Lin, D. Tenorio-Tagle, G. 1989, MNRAS, 237, 461 Google Scholar
Prosser, C. F. et al. 1994, ApJ, 421, 517 Google Scholar
Rees, M. J., & Ostriker, J. P. 1977, MNRAS, 179, 541 CrossRefGoogle Scholar
Richer, H. B., & Fahlman, G. G. 1984, ApJ, 277, 227 Google Scholar
Salpeter, E. E. 1955, ApJ, 121, 161 Google Scholar
Scalo, J.M. 1985, in Protostars and Planets II, eds. Black, D.C. & Matthews, M., (Univ. of Arizona Press), 201 Google Scholar
Scalo, J. M. 1986, Fundam. Cosmic Phys., 11, 1 Google Scholar
Sandage, A. & Katem, B. 1977, ApJ, 215, 62 Google Scholar
Shu, F. 1977, ApJ, 214, 488 Google Scholar
Silk, J. & Takahashi, T. 1979, ApJ, 229, 242 Google Scholar
Stetson, P. B. & Harris, W. E. 1988, AJ, 96, 909 Google Scholar
Tenorio-Tagle, G. Bodenheimer, P. Lin, D. Noriega-Crespo, A. 1986, MNRAS, 221, 635 Google Scholar
Wheeler, J. C., Sneden, C., & Truran, J. W. 1989, ARAA, 27, 279 Google Scholar
White, S. D. M., & Rees, M. J. 1978, MNRAS, 183, 341 Google Scholar
Zinnecker, H., McCaughrean, M., & Wilking, B. A. 1993, in Protostars and Planets III, eds. Levy, E. & Lunine, J., (Univ. of Arizona Press), 429 Google Scholar