Published online by Cambridge University Press: 03 August 2017
It has long been appreciated that atmospheric motions must contribute to the excitation of fluctuations in the Earth's rotation (Munk and MacDonald 1960, Lambeck 1980, Rochester 1984) but the exploitation of modern meteorological data, collected largely to meet the demands of daily global weather forecasting, in the routine evaluation of angular momentum exchange between the atmosphere and the solid Earth was not initiated until comparatively recently (Hide et al. 1980). This procedure constitutes a necessary step towards the accurate separation of these features of the observed non-tidal changes in the length of day and polar motion and that are of meteorological origin from those that must be attributed to other geophysical processes, such as angular momentum transfer between the solid Earth and other fluid regions of the Earth (liquid metallic core, oceans, etc.), and to changes in the inertia tensor of the solid Earth associated with earthquakes, melting of ice, etc.