Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-12T09:49:26.508Z Has data issue: false hasContentIssue false

First Year WMAP Observations

Published online by Cambridge University Press:  23 September 2016

C. L. Bennett*
Affiliation:
Code 685, Goddard Space Flight Center, Greenbelt, MD 20771

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The results of the first year WMAP sky survey are full sky microwave maps in five frequency bands from 23 to 94 GHz. Calibration errors are < 0.5% and the low systematic error level is well specified. The cosmic microwave background (CMB) is separated from the foregrounds using the multifrequency data. The 2 ≤ l ≤ 900 anisotropy power spectrum is cosmic variance limited for l < 354 with a signal-to-noise ratio >1 per mode to l = 658. The temperature-polarization cross-power spectrum reveals both acoustic features and a large angle correlation from reionization. The optical depth of reionization is τ = 0.17 ± 0.04. A best-fit cosmological model to the CMB and other measures of large scale structure works remarkably well with only a few parameters. The age of the best-fit universe is t0 = 13.7 ± 0.2 Gyr old. The matter density is Ωmh2 = 0.135+0.008--0.009, the baryon density is Ωbh2 = 0.0224 ± 0.0009, and the total mass-energy of the universe is Ωtot = 1.02±0.02. For WMAP data alone, ns = 0.99 ± 0.04. The lack of CMB fluctuation power on the largest angular scales reported by COBE and confirmed by WMAP is intriguing. WMAP continues to operate, so results will improve.

Type
Session I: Cosmic Microwave Background and Cosmology
Copyright
Copyright © Astronomical Society of the Pacific 2005 

References

Barnes, C., et al. 2002, ApJS, 143, 567 CrossRefGoogle Scholar
Barnes, C., et al. 2003, ApJS, 148, 51 Google Scholar
Bennett, C. L., et al. 2003a, ApJ, 583, 1 Google Scholar
Bennett, C. L., et al. 2003b, ApJS, 148, 1 Google Scholar
Bennett, C. L., et al. 2003c, ApJS, 148, 97 Google Scholar
Bennett, C. L., et al. 1992, ApJ, 396, L7 Google Scholar
Croft, R. A. C., et al. 2002, ApJ, 581, 20 Google Scholar
Freedman, W. L., et al. 2001, ApJ, 553, 47 Google Scholar
Hinshaw, G. F., et al. 2003a, ApJS, 148, 135 CrossRefGoogle Scholar
Hinshaw, G. F., et al. 2003b, ApJS, 148, 63 Google Scholar
Jarosik, N., et al. 2003a, ApJS, 145, 413 Google Scholar
Jarosik, N., et al. 2003b, ApJS, 148, 29 CrossRefGoogle Scholar
Kogut, A., et al. 2003, ApJS, 148, 161 Google Scholar
Komatsu, E., et al. 2003, ApJS, 148, 119 Google Scholar
Kuo, C. L., et al. 2004, ApJ, 600, 32 Google Scholar
Mather, J. C., Fixsen, D. J., Shafer, R. A., Mosier, C., & Wilkinson, D. T. 1999, ApJ, 512, 511 Google Scholar
Page, L., et al. 2003a, ApJ, 585, 566 Google Scholar
Page, L., et al. 2003b, ApJS, 148, 39 Google Scholar
Page, L., et al. 2003c, ApJS, 148, 233 Google Scholar
Pearson, T. J., et al. 2003, ApJ, 591, 556 Google Scholar
Peiris, H., et al. 2003, ApJS, 148, 213 Google Scholar
Percival, W. J., et al. 2001, MNRAS, 327, 1297 CrossRefGoogle Scholar
Riess, A. G., et al. 2001, ApJ, 560, 49 Google Scholar
Spergel, D. N., et al. 2003, ApJS, 148, 175 Google Scholar
Verde, L., et al. 2002, MNRAS, 335, 432 Google Scholar
Verde, L., et al. 2003, ApJS, 148, 195 Google Scholar
Wright, E. L., Hinshaw, G., & Bennett, C. L. 1996, ApJ, 458, L53 Google Scholar