No CrossRef data available.
Published online by Cambridge University Press: 19 July 2016
In this review, the currently published, complete, spectroscopically identified samples of quasars are assembled to produce a composite luminosity function, independent of evolutionary assumptions. Two interpretations of the change with cosmic time provide reasonable fits to the data. Luminosity evolution implies a fixed population of host objects, with nuclear luminosity that fades with advancing cosmic time; some dependence of the timescale on intrinsic luminosity is required. Density evolution traces objects of comparable luminosity to find the change in space density, without a requirement of long lifetime. The change in co-moving volume density depends on luminosity; newer data suggest that somewhat stronger evolution is required at the low luminosity end than the models of Schmidt and Green allowed. Caution is advised in drawing direct physical conclusions about the evolution of individual quasars from mathematical representations of ensemble properties.