Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T05:14:37.240Z Has data issue: false hasContentIssue false

The Evolution of Supernova Remnants in a Non-Uniform Medium: The Fate of an Evolving OB Association

Published online by Cambridge University Press:  04 August 2017

P. Bodenheimer
Affiliation:
Lick Observatory, U.C. Santa Cruz 95064 Max-Planck-Institut für Astrophysik, Garching b. München, FRG
H. W. Yorke
Affiliation:
Universitäts-Sternwarte, Göttingen, FRG
G. Tenorio-Tagle
Affiliation:
Max-Planck-Institut für Astrophysik, Garching b. München, FRG
M. Beltrametti
Affiliation:
Max-Planck-Institut für Astrophysik, Garching b. München, FRG

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the effect of multiple supernova explosions in a non-uniform interstellar medium using a two dimensional hydrodynamical code (axial symmetry assumed). Cooling effects were included. In a uniform medium two or more supernovae exploding at the same place but at different times result in a remnant with less energy than the sum of the individual explosion energies - when cooling effects are important. As a case of special interest the evolution of an OB association with many massive stars experiencing supernova explosions is presented. We show that it is difficult to produce large supershells with multiple supernovae alone, even if the sum of their explosion energies appear to be sufficient. The existence of a giant HII region preceding the explosions does not alter this conclusion. Other mechanisms should be considered to produce supershells.

Type
IV. Old Supernova Remnants - Heating of the Interstellar Medium
Copyright
Copyright © Reidel 1983 

References

Beltrametti, M., Tenorio-Tagle, G., Yorke, H.W. 1982, Astron. Astrophys. 112, 1.Google Scholar
Bodenheimer, P., Tenorio-Tagle, G., Yorke, H.W. 1979, Astrophys. J. 233, 85.CrossRefGoogle Scholar
Bodenheimer, P., Yorke, H.W., Tenorio-Tagle, G. 1982, in preparation Google Scholar
Bruhweiler, F.O., Gull, T.R., Kafatos, M., Sofia, S. 1980, Astrophys. J. (Letters) 238, L27.CrossRefGoogle Scholar
Heiles, C. 1979, Astrophys. J. 229, 533 CrossRefGoogle Scholar
Heiles, C. 1983, this volume, p. 367.Google Scholar
Kafatos, M., Sofia, S., Bruhweiler, F., Gull, T. 1980, Astrophys. J. 242, 294.CrossRefGoogle Scholar
McKee, C.F., Hollenbach, D.J. 1980, Ann. Rev. Astron. Astrophys. 18, 219.CrossRefGoogle Scholar
Ostriker, J.P., Richstone, D.D., and Thuan, T.X., 1974, Astrophys. Letters, 188, L87 CrossRefGoogle Scholar
Paul, J., Cassé, M., Cesarsky, C.J. 1976, Astrophys. J. 207, 62.CrossRefGoogle Scholar
Tenorio-Tagle, G. 1981, Astron. Astrophys. 93, 338.Google Scholar
Tenorio-Tagle, G., Yorke, H.W., Bodenheimer, P. 1981, in “Mechanisme de Production d'Energie dans le Milieu Interstellaire”, ed. Sivan, P., Marseille: Laboratoire d'Astronomie Spatiale du CNRS, p. 181.Google Scholar
Tenorio-Tagle, G., Bodenheimer, P., Yorke, H.W. 1983, IAU Symp. No. 101, this volume, p. 399.Google Scholar