Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T15:53:36.058Z Has data issue: false hasContentIssue false

Evolution of Inhomogeneities in the Inflationary Universe -No Hair Theorem or Multi-Production of Universes?-

Published online by Cambridge University Press:  03 August 2017

Katsuhiko Sato*
Affiliation:
Department of Physics, Faculty of Science, the University of Tokyo, Tokyo 113 Japan

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent investigations on the evolution of the inhomogeneities in the inflationary universe are reviewed. 1) Strict cosmological no hair theorem does not hold, but the class of inhomogeneous universe which evolve to homogeneous de Sitter universe is finite, i.e, “weak cosmic no hair theorem” holds. 2) High density regions in the inhomogeneous universe evolve to wormholes provided that i) the size of the regions is greater than the horizon length, but smaller than a critical length which is the function of the density contrast, and ii) the density is three times higher than that of surrounding region. 3) If wormholes are formed copiously in the period of inflation, they evolve to causally disconnected “child- universes”. In this scenario, the universe we are now observing is one of the locally flat regions.

Type
Research Article
Copyright
Copyright © Reidel 1988 

References

Albrecht, A. and Steinhardt, P. J., 1982, Phys. Rev. Lett. 48, 1220.CrossRefGoogle Scholar
Barrow, J. D., 1986, Phys. Lett. 182B, 25.CrossRefGoogle Scholar
Barrow, J. D., 1987, Phys. Lett. 187B, 12.CrossRefGoogle Scholar
Belinsky, V. A., Grishchuk, L. P., Khalatnikov, I. M. and Zeldovich, Ya. B., 1985, Phys. Lett. 155B, 232.CrossRefGoogle Scholar
Blau, S. K., Guendelman, E. I. and Guth, A. H., 1987, Phys. Rev. D.35, 1747.Google Scholar
Farhi, E. and Guth, A. H., 1987, Phys. Lett. 183B, 149.CrossRefGoogle Scholar
Guth, A. H., 1981, Phys. Rev. D23, 347.Google Scholar
Jensen, L. G. and Stein-Schabes, J. A., 1987, Phys. Rev. D.35, 1146.Google Scholar
Kazanas, D. 1980, Astrophys. J. 241, L59.CrossRefGoogle Scholar
Kodama, H., Sato, K., Sasaki, M. and Maeda, K., 1981, Prog. Theor. Phys. 66, 2052.CrossRefGoogle Scholar
Linde, A. D., 1982, Phys. Lett. 108B, 389.CrossRefGoogle Scholar
Linde, A. D., 1983, Phys. Lett. 129B, 177.CrossRefGoogle Scholar
Linde, A. D., 1986, Phys. Lett. 175B, 395.CrossRefGoogle Scholar
Maeda, K., Sato, K., Sasaki, M. and Kodama, H., 1982, Phys. Lett. 108B, 98.CrossRefGoogle Scholar
Martines-Gonzalez, E. and Jones, B. J. T., 1986, Phys. Lett. 167B, 37.CrossRefGoogle Scholar
Moss, I. and Sahni, V., 1986, Phys. Lett. 178B, 156.Google Scholar
Piran, T. and Williams, R. M., 1985, Phys. Lett. 163B, 331.CrossRefGoogle Scholar
Rothman, T. and Ellis, G. F. R., 1986, Phys. Lett. 180B, 19.CrossRefGoogle Scholar
Sato, K., 1981a, Mon. Not. Roy. Astron. Soc., 195, 467.CrossRefGoogle Scholar
Sato, K., 1981b, Phys. Lett. 99B, 66.CrossRefGoogle Scholar
Sato, K., 1981c, in Grand Unified Theories and Related Topics, ed. by Konuma, M. and Maskawa, T., World Scientific. 289.Google Scholar
Sato, K., Sasaki, M., Kodama, H. and Maeda, K., 1981, Prog. Theor. Phys. 65, 1443.CrossRefGoogle Scholar
Sato, K., Sasaki, M., Kodama, H. and Maeda, K., 1982, Phys. Lett. 108B, 103.CrossRefGoogle Scholar
Starobinskii, A. A., 1980, Phys. Lett., 91B, 99.CrossRefGoogle Scholar
Starobinskii, A. A., 1983, JETP Lett., 37B, 66.Google Scholar
Stein-Schabes, J. A., 1987, Phys. Rev. D35, 2345 Google Scholar
Turner, M. S. and Widrow, L. M., 1986, Phys. Rev. Lett. 57, 2237.CrossRefGoogle Scholar
Wald, R. M., 1983, Phys. Rev. D28, 2118.Google Scholar