Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T17:13:06.205Z Has data issue: false hasContentIssue false

Energetics, Collimation and Propagation of Galactic Protostellar Outflows

Views and Perspectives

Published online by Cambridge University Press:  25 May 2016

Max Camenzind*
Affiliation:
Landessternwarte Königstuhl, D–69117 Heidelberg, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Formation of jets in low-mass protostellar objects and young pre-main sequence stars is ultimately related to the existence of some gaseous disk around a rapidly rotating central object. This configuration has deep parallels to extragalactic systems such as radio galaxies and quasars. Rotating black holes are still thought to be the prime-mover behind the activity detected in centers of galaxies, while, in the case of protostellar jets, rapidly rotating stars and disks are responsible for the ejection of bipolar outflows. In both cases, magnetic fields are invoked for the acceleration, the collimation and propagation of these outflows. The ultimate rooting of these fields is still under debate. We discuss models where winds injected into rapidly rotating magnetospheres of the central object drive the outflows. From these considerations it follows that the jets of young stellar objects can only be produced magnetically and that their progagation is determined by their magnetic properties. Such jets have low Mach numbers ≃ 2 and their instabilities are dominated by the pinch mode. Knots closest to the source are attributed to compression by the time-dependent pinches. Multiple bow shocks occur on longer time-scales (a few thousand years) and are attributed to variations in the magnetospheric structure of the star, or the disk.

Type
III. Theoretical Models
Copyright
Copyright © Kluwer 1997 

References

Appl, S., Camenzind, M.: 1992, A&A 256, 354.Google Scholar
Appl, S., Camenzind, M.: 1993a, A&A 270, 71.Google Scholar
Appl, S., Camenzind, M.: 1993b, A&A 274, 699.Google Scholar
Blandford, R.D., Payne, D.G.: 1982, MNRAS 199, 883.CrossRefGoogle Scholar
Belcher, J.W., MacGregor, K.B.: 1976, ApJ 210, 498.CrossRefGoogle Scholar
Camenzind, M.: 1986a, A&A 156, 137.Google Scholar
Camenzind, M.: 1986b, A&A 162, 32.Google Scholar
Camenzind, M.: 1987, A&A 184, 341.Google Scholar
Camenzind, M.: 1989, in Accretion Disks and Magnetic Fields in Astrophysics, ed. Belvedere, G., Kluwer (Dordrecht), p. 129.Google Scholar
Camenzind, M.: 1990, in Reviews of Modern Astronomy 3, ed. Klare, G., Springer-Verlag (Heidelberg), p. 234.Google Scholar
Camenzind, M.: 1993, in The Jets of Radio Galaxies, eds. Röser, H.J. & Meisenheimer, K., Lecture Notes in Physics 421, Springer-Verlag (Heidelberg), p. 109.Google Scholar
Camenzind, M. 1996, in Solar and Astrophysical Magnetohydrodynamic Flows, ed. Tsinganos, K.C., Kluwer (Dordrecht), p. 699.CrossRefGoogle Scholar
Camenzind, M., Lesch, H.: 1994, A&A 284, 411.Google Scholar
Charbonneau, P. 1995, ApJS 101, 309.Google Scholar
Clark, D.A., Stone, J.M., Norman, M.L.: 1990, BAAS 22, 801.Google Scholar
Fendt, C., Camenzind, M., Appl, S.: 1995, A&A 300, 791.Google Scholar
Fendt, C., Camenzind, M. 1996, A&A 313, 591.Google Scholar
Ferreira, J., Pelletier, G.: 1995, A&A 295, 807.Google Scholar
Ferreira, J.: 1997, A&A, in press.Google Scholar
Goodson, A.P., Winglee, R.M., Böhm, K.H.: 1997, ApJ, submitted.Google Scholar
Hartmann, L., MacGregor, K.B.: 1982, ApJ 259, 180.Google Scholar
Heyvaerts, J., Norman, C.A. 1996, in Solar and Astrophysical Magnetohydrodynamic Flows, ed. Tsinganos, K.C., Kluwer (Dordrecht), p. 459.Google Scholar
Kössl, D., Müller, E., Hillebrandt, W.: 1990, A&A 229, 378, 397.Google Scholar
Küker, M., Rüdiger, G., Pipin, V.V.: 1996, A&A 312, 615.Google Scholar
Lada, C.J.: 1985, AAR&A 23, 267.Google Scholar
Lada, C.J., Fich, M.: 1996, ApJ 459, 638.Google Scholar
Lind, K., Payne, D.G., Meier, D.L., Blandford, R.D.: 1989, ApJ 344, 89.Google Scholar
MacGregor, K.B.: 1996, in Solar and Astrophysical Magnetohydrodynamic Flows, ed. Tsinganos, K.C., Kluwer (Dordrecht), p. 301.Google Scholar
McCaughrean, M.J., Rayner, J.T., Zinnecker, H.: 1994, ApJL 436, L189.Google Scholar
Ouyed, R., Pudritz, R.E., Stone, J.M.: 1997, Nature 385, 409.Google Scholar
Paatz, G., Camenzind, M.: 1996a, A&A 308, 77.Google Scholar
Paatz, G., Camenzind, M.: 1996b, Astro. Lett. and Communications 34, 315.Google Scholar
Pelletier, G., Pudritz, R.E.: 1992, ApJ 394, 117.Google Scholar
Pudritz, R.E., Norman, C.A.: 1986, ApJ 301, 571.CrossRefGoogle Scholar
Ray, T.P., Mundt, R., Dyson, J.E., Falle, S.A.E.G., Raga, A.C.: 1996, ApJL 468, L103.Google Scholar
Reyes-Ruiz, M., Stepinski, T.F.: 1996, ApJ 459, 653.CrossRefGoogle Scholar
Rüdiger, G., Elstner, D., Stepinski, T.F.: 1995, A&A 298, 934.Google Scholar
Shu, F.H., Najita, J., Wilkin, F., Ruden, S.P., Lizano, S.: 1994, ApJ 429, 781.CrossRefGoogle Scholar
Stapelfeldt, K.R., et al.: 1995, ApJ 449, 888.Google Scholar
Stepinski, T.F., Levy, E.H.: 1991, ApJ 379, 343.Google Scholar
Stone, J.M., Norman, M.L.: 1993, ApJ 413, 210.CrossRefGoogle Scholar
Suttner, G., Smith, M.D., Yorke, H.W., Zinnecker, H.: 1997, A&A, in press.Google Scholar
Weber, E.J., Davis, L.: 1967, ApJ 148, 217.Google Scholar
Zinnecker, H., McCaughrean, M.J., Rayner, J.T.: 1996, in Disks and Outflows around Young Stars, eds. Beckwith, S., Staude, J., Quetz, A. and Natta, A., Lecture Notes in Phys. 465, (Heidelberg, Springer–Verlag), p. 236.CrossRefGoogle Scholar