Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-12T10:29:36.698Z Has data issue: false hasContentIssue false

The Emergence of Magnetic Flux in Active Regions

Published online by Cambridge University Press:  13 May 2016

W. P. Abbett
Affiliation:
Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450
G. H. Fisher
Affiliation:
Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450
Y. Fan
Affiliation:
HAO, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Over the past decade, “thin flux tube” models have proven successful in explaining many properties of active regions in terms of magnetic flux tube dynamics in the solar interior. On the other hand, recent 2-D MHD simulations of the emergence of magnetic flux have shown that many of the assumptions adopted in the thin flux tube approximation are invalid. For example, unless the flux tubes exhibit a large degree of initial field line twist — and observations of emerging active regions suggest they do not — they will fragment (break apart) before they are able to emerge through the surface. We attempt to resolve this paradox using a number of 3-D MHD simulations (in the anelastic approximation) that describe the rise and fragmentation of twisted magnetic flux tubes. We find that the degree of fragmentation of an evolving Ω-loop depends strongly on the 3-D geometry of the loop, and that the Coriolis force plays a dynamically important role in the evolution and emergence of magnetic flux.

Type
Session III: Active Region Structure and Dynamics
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Abbett, W. P., Fisher, G. H., & Fan, Y. Jan 2001, ApJ, in press.Google Scholar
Abbett, W. P., Fisher, G. H., & Fan, Y. 2000, ApJ, 540, 548.CrossRefGoogle Scholar
Brummell, N. H., Hurlburt, N. E., & Toomre, J. 1996, ApJ, 473, 494.CrossRefGoogle Scholar
Caligari, P., Moreno-Insertis, F., & Schüssler, M., 1995, ApJ, 441, 886.CrossRefGoogle Scholar
Emonet, T., & Moreno-Insertis, F., 1998, ApJ, 492, 804.Google Scholar
Fan, Y., 2000, ApJ, in press.Google Scholar
Fan, Y., Fisher, G. H., 1996, Sol. Phys., 166, 17.Google Scholar
Fan, Y., Zweibel, E. G., & Lantz, S. R., 1998, ApJ, 493, 480.Google Scholar
Lantz, S. R., & Fan, Y., 1999, ApJS, 121, 247.Google Scholar
Longcope, D. W., Fisher, G. H., & Arendt, S., 1996, ApJ, 464, 999.Google Scholar
Longcope, D. W., Fisher, G. H., & Pevtsov, A. A., 1998, ApJ, 508, 885.Google Scholar
Moreno-Insertis, F., Caligari, P., & Schüssler, M., 1994, Sol. Phys., 153, 449.Google Scholar
Moreno-Insertis, F., & Emonet, T., 1996, ApJ, 472, L53.Google Scholar
Pevtsov, A. A., Canfield, R. C., & Metcalf, T. R., 1995, ApJ, 440, L109.CrossRefGoogle Scholar
Wissink, J. G., Proctor, M. R. E., Matthews, P. C., Hughes, D. W., 2000, MNRAS, in press.Google Scholar