Hostname: page-component-cc8bf7c57-7lvjp Total loading time: 0 Render date: 2024-12-12T02:49:19.020Z Has data issue: false hasContentIssue false

Eclipse mapping and related techniques

Published online by Cambridge University Press:  25 May 2016

René G. M. Rutten*
Affiliation:
Netherlands Foundation for Research in Astronomy, and Royal Greenwich Observatory Isaac Newton Group of Telescopes, La Palma, SPAIN

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Eclipse mapping is a technique to deduce spatial structure on very small angular scales in eclipsing cataclysmic variable stars (CVs). By analysing the eclipse light curve, information is obtained on the brightness structure of the accretion disk and of the compact mass-accreting object in these systems. This information would otherwise be well beyond the resolving power of any optical telescope. Since the development of the eclipse mapping technique by K. Horne, about one decade ago, it has now become an important tool in the study of CVs. Originally eclipse mapping was employed to construct brightness maps of accretion disks in broad spectral bands. Recently, maps of much higher spectral resolution have become available from which optical and UV spectra have been reconstructed in spatial detail across accretion disks. Such information is very important for our understanding of the physics of the accretion process.

In this paper I will describe the eclipse mapping technique and review recent results. In conjunction, I will briefly highlight other techniques related to the mapping of surface structure in CVs.

Type
Session I: “Stellar Surface Mapping Techniques”
Copyright
Copyright © Kluwer 1996 

References

Balbus, S.A., Hawley, J.F., 1991, ApJ 376, 214 Google Scholar
Baptista, R., Horne, K., Hilditch, R.W., Mason, K.O., Drew, J.E., 1995, ApJ 448, 395 Google Scholar
Baptista, R., Steiner, J.E., 1991, A&A 249, 284 Google Scholar
Baptista, R., Steiner, J.E., 1993, A&A 277, 331 Google Scholar
Cannizzo, J., 1993, in “Accretion disks in compact stellar systems”, ed Wheeler, J. C., p. 7 Google Scholar
Chester, T.J., 1979, ApJ 230, 167 Google Scholar
Frank, J., King, A., Raine, D., 1992, “Accretion power in astrophysics”, Cambridge University Press Google Scholar
Hawley, J.F., Gammie, C.F., Balbus, S.A., 1995, ApJ 440, 742 Google Scholar
Horne, K., 1985, MNRAS 213, 129 CrossRefGoogle Scholar
Hubeny, I., 1990, ApJ 351, 632 Google Scholar
King, A.R., 1988, Q. J. R. Astr. Soc. 29, 1 Google Scholar
de Kool, M., 1992, A&A 261, 188 Google Scholar
La Dous, C., 1993, in “Cataclysmic Variables and Related Objects”, eds. Hack, M., La Dous, C., NASA SP-507, p15 Google Scholar
Marsh, T.R., 1992, MNRAS 259, 695 Google Scholar
Marsh, T.R., Horne, K., 1988, MNRAS 235, 269 CrossRefGoogle Scholar
Marsh, T.R., Horne, K., Schlegel, E.M., Honneycutt, R.K., Kaitchuck, R.H., 1990, ApJ 364, 637 Google Scholar
Osaki, Y., 1994, in “Theory of Accretion Disks”, ed. Duschl, W., p. 93 Google Scholar
Rutten, R.G.M., Dhillon, V.S., 1994. A&A 288, 773 Google Scholar
Rutten, R.G.M., Dhillon, V.S., Horne, K., Kuulkers, E., van Paradijs, J., 1993, Nature 362. 518 CrossRefGoogle Scholar
Rutten, R.G.M., van Paradijs, J., Tinbergen, J., 1992, A&A 260, 213 Google Scholar
Semel, M., Donati, J., Rees, D.E., 1993, A&A 278, 231 Google Scholar
Shaviv, G., Wehrse, R., 1993, in “Accretion disks in compact stellar systems”, ed Wheeler, J. C., p. 148 CrossRefGoogle Scholar
Skilling, J., Bryan, R.K., 1984, MNRAS 211, 111 Google Scholar
Spruit, H.C., 1994, A&A 289, 441 Google Scholar
Vio, R., Horne, K., Wamsteker, W., 1994, PASP 106, 1091 Google Scholar
Warner, B., O'Donoghue, D., 1988, MNRAS 233, 705 CrossRefGoogle Scholar
Wood, J., Horne, K., Berriman, G., Wade, R., O'Donoghue, D., Warner, B., 1986, MNRAS 219, 629 Google Scholar