Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T04:25:15.903Z Has data issue: false hasContentIssue false

Dust Particles and Molecules in the Extended Atmospheres of Carbon Stars

Published online by Cambridge University Press:  14 August 2015

Daya P. Gilra*
Affiliation:
Space Astronomy Laboratory, Washburn Observatory, University of Wisconsin, Madison, Wis., U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that the absorption due to a circumstellar shell containing solid silicon carbide particles can very nicely explain the observed strong violet opacity in stars in which the carbon to oxygen ratio is > 1. It has been shown by Friedemann and Gilman that solid SiC particles can form in the cooler outer layers of such stars. Thermal re-emission from SiC particles is predicted to be in the 10–13 μ region and recent infrared observations by Hackwell show an emission band in this region, thereby strongly supporting the SiC suggestion. It is also shown that the opacity due to C3 pseudo-continuum is not adequate to explain the observed violet opacity.

It is suggested that the vibrational bands of C3 and SiC2 molecules should be among the major opacity sources in the infrared spectra of the late N-type carbon stars and some of the observed bands may be, at least in part, due to these molecules. The frequencies of their isotopic species have been calculated and attempts should be made to observe these bands.

Thus the atmosphere of a late N-star should be pictured as containing, probably on its outskirts, solid carbon particles. There is some kind of smoke veil around the star causing a reddening by absorption of the ultraviolet.

A veiling effect by smoke has been occasionally envisaged to interpret various astronomical phenomena, even in the case of novae. A late N-star would be a striking example. The smoke veil would vary in variable N-stars.

B. Rosen and P. Swings (1953)

Type
Part IX Circumstellar Dust
Copyright
Copyright © Reidel 1973 

References

Bartunek, P. F. and Barker, E. F.: 1935, Phys. Rev. 48, 516.Google Scholar
Brewer, L. and Engelke, J. L.: 1962, J. Chem. Phys. 36, 992.Google Scholar
Catchpole, R. M. and Feast, M. W.: 1971, Monthly Notices Roy. Astron. Soc. 154, 197.Google Scholar
Choyke, W. J.: 1969, Materials Research Bulletin 4, S141.Google Scholar
Code, A. D.: 1973, this volume, p. 505.CrossRefGoogle Scholar
Fay, T. and Honeycutt, R. K.: 1972, Astron. J. 77, 29.Google Scholar
Feast, M. W.: 1955, Mém. Soc. Roy. Sci. Liège 15, 280.Google Scholar
Feast, M. W.: 1957, Mém. Soc. Roy. Sci. Liège 18, 301.Google Scholar
Friedemann, Chr.: 1969a, Physica 41, 139.Google Scholar
Friedemann, Chr.: 1969b, Astron. Nachr. 291, 177.Google Scholar
Fujita, Y.: 1970, Interpretation of Spectra and Atmospheric Structure in Cool Stars , University Park Press, Baltimore.Google Scholar
Gausset, L., Herzberg, G., Lagerquist, A., and Rosen, B.: 1965, Astrophys. J. 142, 45.CrossRefGoogle Scholar
Gaustad, J. E., Gillett, F. C., Knacke, R. F., and Stein, W. A.: 1969, Astrophys. J. 158, 613.Google Scholar
Gillett, F. C., Merrill, K. M., and Stein, W. A.: 1971, Astrophys. J. 164, 83.Google Scholar
Gilman, R. C.: 1969, Astrophys. J. Letters 155, L185.Google Scholar
Gilra, D. P.: 1972a, in Code, A. D. (ed.), The Scientific Results from the Orbiting Astronomical Observatory , NASA-SP 310, p. 295.Google Scholar
Gilra, D. P.: 1972b, unpublished , .Google Scholar
Gilra, D. P. and Code, A. D.: 1971, Bull. Am. Astron. Soc. 3, 379.Google Scholar
Gilra, D. P. and Code, A. D.: 1972, in prepration. Google Scholar
Hackwell, J. A.: 1972, Astron. Astrophys. 21, 239.Google Scholar
Herzberg, G.: 1945, Infrared and Raman Spectra of Polyatomic Molecules , D. van Nostrand Co., Princeton.Google Scholar
Johnson, H. L., Mitchell, R. I., and Latham, A. S.: 1967, Comm. Lunar Planetary Lab. 6, 85.Google Scholar
Kleman, B.: 1956, Astrophys. J. 123, 162.Google Scholar
Low, F. J., Johnson, H. L., Kleinman, D. E., Latham, A. S., and Geisel, S. L.: 1970, Astrophys. J. 160, 531.Google Scholar
McKellar, A. and Richardson, E. H.: 1955, Mém. Soc. Roy. Sci. Liège 15, 256.Google Scholar
Mendoza, E. E. and Johnson, H. L.: 1965, Astrophys. J. 141, 165.Google Scholar
Merer, A. J.: 1967, Can. J. Phys. 45, 4103.Google Scholar
Patrick, L. and Choyke, W. J.: 1969, Phys. Rev. 186, 775.Google Scholar
Rosen, B. and Swings, P.: 1953, Ann. Astrophys. 16, 82.Google Scholar
Shajn, G. and Struve, D.: 1947, Astrophys. J. 106, 86.CrossRefGoogle Scholar
Shane, C. D.: 1928, Lick Obs. Bull. 13, 123.Google Scholar
Slettebak, A.: 1972, Bull. Am. Astron. Soc. 4, 152.Google Scholar
Spinrad, H. and Wing, R. F.: 1969, Ann. Rev. Astron. Astrophys. 7, 249.Google Scholar
Stephenson, C. B.: 1965, Astrophys. J. 142, 712.Google Scholar
Stephenson, C. B. and Ross, H. E.: 1970, Astron. J. 75, 321.Google Scholar
Swings, P.: 1953, Ann. Astrophys. 16, 287.Google Scholar
Swings, P., McKellar, A., and Rao, K. N.: 1953, Monthly Notices Roy. Astron. Soc. 113, 571.Google Scholar
Vardya, M. S.: 1970, Ann. Rev. Astron. Astrophys. 8, 87.Google Scholar
Verma, R. D. and Nagaraj, S.: 1971, private communication. Google Scholar
Weltner, W. and McLeod, D.: 1964a, J. Chem. Phys. 40, 1305.CrossRefGoogle Scholar
Weltner, W. and McLeod, D.: 1964b, J. Chem. Phys. 41, 235.Google Scholar
Yamashita, Y.: 1967, Publ. Dominion Astrophys. Obs. 13, 67.Google Scholar
Yamashita, Y. and Utsumi, K.: 1968, Publ. Astron. Soc. Japan 20, 73.Google Scholar