Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-06T03:58:15.960Z Has data issue: false hasContentIssue false

Distribution of starspots on cool stars A Model Based On the Dynamics of Magnetic Flux Tubes

Published online by Cambridge University Press:  25 May 2016

M. Schüssler*
Affiliation:
Kiepenheuer-Institut Schöneckstr. 6, D-79104 Freiburg, Germany [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A theoretical study of storage, instability and rise of magnetic flux tubes in the outer convection zone of a cool star is presented. Special emphasis is laid on their emergence latitudes at the surface of magnetically active stars. We apply the ‘solar paradigm’ and assume toroidal magnetic flux tubes to be stored in force equilibrium within the overshoot layer underneath the convection zone. A non-axisymmetric (undulatory) instability leads to the formation of flux loops, which rise through the convection zone and emerge at the surface to form bipolar magnetic regions and starspots. Our approach combines the analytical determination of the linear stability properties of flux tubes with numerical simulations of the nonlinear evolution of the instability and the rise of magnetic flux tubes through the convection zone. It is found that for sufficiently rapidly rotating stars the magnetic flux emerges at high latitudes since the Coriolis force leads to a poleward deflection of rising flux loops. The latitude distribution of the emerging flux is determined for a number of stellar models along the evolutionary sequence of a star with one solar mass, from the pre-main sequence evolution up to the giant phase. Rapid rotation and deep convection zones favour flux emergence in high latitudes. Starspots right at the stellar (rotational) poles form either directly by flux eruption from small stellar cores (as for T Tauri stars or giants) or by a poleward slip of the sub-surface part of the flux tube after flux emergence in mid latitudes. The latter process explains the simultaneous existence of polar spots and spots at intermediate latitudes as observed on some stars.

Type
Session III: “Photospheric Phenomena: Results”
Copyright
Copyright © Kluwer 1996 

References

Caligari, P., Moreno-Insertis, F., Schüssler, M. 1995, ApJ, 441, 886 Google Scholar
Cattaneo, F., Hughes, D.W. 1988, J. Fluid Mech., 196, 323 CrossRefGoogle Scholar
Choudhuri, A.R., Gilman, P.A. 1987, ApJ, 316, 788 CrossRefGoogle Scholar
D'silva, S., Choudhuri, A.R. 1993, A&A, 272, 621 Google Scholar
Dikpati, M., Choudhuri, A.R. 1994, A&A, 291, 975 Google Scholar
Donati, J.-F., Brown, S.F., Semel, M., Rees, D.E., Dempsey, R.C., Mathews, J.M., Henry, G.W., Hall, D.S. 1992, A&A, 265, 682 Google Scholar
Ferriz-Mas, A., Schüssler, M. 1993, Geophys. Astrophys. Fluid Dyn., 72, 209 Google Scholar
Ferriz-Mas, A., Schüssler, M. 1994, ApJ, 433, 852 Google Scholar
Ferriz-Mas, A., Schüssler, M. 1996, Geophys. Astrophys. Fluid Dyn., in press Google Scholar
Ferriz-Mas, A., Schmitt, D., Schüssler, M. 1994, A&A, 289, 949 Google Scholar
Hall, D.S. 1990, in The Sun and Cool Stars: Activity, Magnetism, Dynamos, Tuominen, I., Moss, D., Rüdiger, G. (Eds.), Springer, HeidelbergIAU Coll., 130, p. 353 Google Scholar
Kitchatinov, L.L., Rüdiger, G. 1995, A&A, 299, 446 Google Scholar
Moreno-Insertis, F., 1983, A&A, 122, 241 Google Scholar
Moreno-Insertis, F., 1992, in: Sunspots, Theory and Observations, Thomas, J. H. and Weiss, N. O. (eds.), Kluwer, Dordrecht, 385 CrossRefGoogle Scholar
Moreno-Insertis, F., Caligari, P., Schüssler, M. 1995, ApJ, 452, 894 Google Scholar
Moreno-Insertis, F., Schüssler, M., Ferriz-Mas, A. 1992, A&A, 264, 686 Google Scholar
Parker, E.N. 1975, ApJ, 198, 205 CrossRefGoogle Scholar
Proctor, M. R. E., Weiss, N. O. 1982, Rep. Progr. Phys. 45, 1317 CrossRefGoogle Scholar
Schaller, G., Schaerer, G., Meynet, G., Maeder, A. 1992, A&A Suppl. Ser. 96, 269 Google Scholar
Schou, J., Christensen-Dalsgaard, J., Thompson, M.J. 1994, ApJ, 433, 389 CrossRefGoogle Scholar
Schüssler, M. 1993, in: The Cosmic Dynamo, Krause, F., Rädler, K.-H., Rüdiger, G. (eds.), IAU-Symp. No. 157, Kluwer, Dordrecht, 27 Google Scholar
Schüssler, M. 1996, in: Solar and Astrophysical Magnetohydrodynamic Flows, Tsinganos, K. (ed.), NATO ASI, Kluwer, Dordrecht, in press Google Scholar
Schüssler, M., Caligari, P., Ferriz Mas, A., Moreno-Insertis, F. 1994, A&A, 281, L69 Google Scholar
Schüssler, M., Caligari, P., Ferriz Mas, A., Solanki, S.K., Stix, M. 1996, A&A, submitted Google Scholar
Schüssler, M., Caligari, P., Ferriz Mas, A., Solanki, S.K., Schaerer, D. 1996, in preparation Google Scholar
Schüssler, M., Solanki, S.K. 1992, A&A, 264, L13 Google Scholar
Shaviv, G., Salpeter, E.E. 1973, ApJ, 184, 191 Google Scholar
Skaley, D., Stix, M. 1991, A&A, 241, 227 Google Scholar
Spiegel, E.A., Weiss, N.O. 1980, Nature, 287, 616 CrossRefGoogle Scholar
Spruit, H.C. 1981, A&A, 102, 129 Google Scholar
Spruit, H.C., van Ballegooijen, A.A. 1982, A&A, 106, 58 Google Scholar
Tomczyck, S., Schou, J., Thompson, M.J. 1995, ApJ, 448, L57 Google Scholar
Vogt, S.S., Penrod, G.D. 1983, PASP, 95, 565 Google Scholar
Zahn, J.P. 1991, A&A, 252, 179 Google Scholar
Zwaan, C. 1992, in: Sunspots-Theory and Observations, eds. Thomas, J. H. & Weiss, N. O. (Dordrecht:Kluwer), 75 Google Scholar
Zwaan, C., Harvey, K.L. 1994, in: Solar magnetic fields, eds. Schüssler, M. & Schmidt, W., (Cambridge University Press), 27 Google Scholar