No CrossRef data available.
Published online by Cambridge University Press: 25 May 2016
It is reasonable to say that if Jan Oort were alive today, he would no doubt find recent developments in the study of the Galactic bulge to be fascinating. Oort considered the Galactic bulge in two contexts. First, he was interested in the use of the RR Lyrae stars as probes to determine the distance to the Galactic Center. No doubt, Oort would have been excited about the growing evidence of the bulge's triaxiality, as well as by the debate over the age of the bulge. His second interest was in the nature of activity at the center, an issue that I will not discuss in this review. The latter also remains an unsolved problem of the Milky Way, and (based on his work) one that might have been nearer to his heart than this one. Yet the question of when the bulge formed is ultimately a question about the formation history of the Galaxy. The oldest stars (those whose ages we are certain of) are found in Galactic globular clusters, the sum total of which are ≈ 5 × 107M⊙. The field population of the bulge is ≈ 2–3 × 1010M⊙, an order of magnitude more massive than the field population of the metal poor spheroid. So if the bulge formed all at once, and early, then the Milky Way had a luminous, even cataclysmic youth. But if the bulge formed later in the history of our galaxy, as a starburst or dynamical instability of the central disk, then the young Milky Way may have been inconspicuous and primeval galaxies may be hard to find indeed. If our bulge formed very early, its stellar population might have much in common with the giant ellipticals, while a late bulge might teach us much about processes that affect galaxy evolution.