Hostname: page-component-cc8bf7c57-fxdwj Total loading time: 0 Render date: 2024-12-11T06:01:22.587Z Has data issue: false hasContentIssue false

Determination of opacity data bases for TiO and H2O

Published online by Cambridge University Press:  25 May 2016

S.R. Langhoff
Affiliation:
Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035, USA
D.W. Schwenke
Affiliation:
Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035, USA
H. Partridge
Affiliation:
Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035, USA

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Current ab initio methods for determining potential energy surfaces are discussed in relation to the TiO and H2O molecules, both of which make important contributions to the opacity of M-type stars. For the TiO molecule we discuss the determination of the radiative lifetimes of the excited states and band oscillator strengths for both the triplet and singlet band systems. While the theoretical radiative lifetimes for TiO agree well with recent measurements, the band oscillator strengths differ significantly from those currently employed in opacity calculations. For the H2O molecule we discuss the current results for the ground state potential energy and dipole moment surfaces generated at NASA Ames. We show that it is necessary to account for such effects as core-valence correlation to generate a potential energy surface of near spectroscopic accuracy. The current status of our effort to establish opacity data bases for both TiO and H2O is described.

Type
Basic Molecular Processes
Copyright
Copyright © Kluwer 1997 

References

Brett, J. M. 1990, Astron. Astrophys., 231, 440.Google Scholar
Carette, P., Schamps, J. 1992, J. Mol. Spectrosc., 154, 448.Google Scholar
Collins, J. G. 1975, J. Phys. B 1975, 304, and references therein.CrossRefGoogle Scholar
Davis, S. P., Littleton, J. E., Phillips, J. G. 1986, ApJ, 309, 449.Google Scholar
Doverstal, M., Weijnitz, P. 1992, Mol. Phys. 75, 1357.Google Scholar
Dunning, T. H. 1989, J. Chem. Phys., 90, 1007.Google Scholar
Feinberg, J., Davis, S. P. 1977, J. Mol. Spectrosc. 65, 264.Google Scholar
Feinberg, J., Davis, S. P. 1978, J. Mol. Spectrosc. 69, 445.Google Scholar
Hedgecock, I. M., Naulin, C., Costes, M. 1995, Astron. Astrophys., 304, 667.Google Scholar
J⊘rgensen, U. G. 1994, Astron. Astrophys., 284, 179.Google Scholar
J⊘rgensen, U. G., Jensen, P. 1993, J. Mol. Spectrosc. 161, 219.CrossRefGoogle Scholar
Kendall, R. A., Dunning, T. H., Harrison, R. J. 1992, J. Chem. Phys., 96, 6796.Google Scholar
Langhoff, S. R. 1997, Ap. J., submitted.Google Scholar
Merrill, P. W., Deutsch, A. J., Keenan, P. C. 1962, Ap. J., 136, 21.Google Scholar
Partridge, H., Schwenke, D. W. 1997, J. Chem. Phys. in preparation.Google Scholar
Polyansky, O. L., Busler, J. R., Guo, B., Zhang, K., Bernath, P. F. 1996, J. Mol. Spectrosc. 176, 305, and references therein.Google Scholar
Price, M. L., Sulzmann, K. G., Penner, S. S. 1974, J. Quant. Spectrosc. Radiat. Transfer, 14, 1273.Google Scholar
Rothman, L. S., Gamache, R., Schroeder, J. W., McCann, A., Wattson, R. B. 1995, SPIE Proc., 2471, 105.Google Scholar
Schamps, J., Sennesal, J. M., Carette, P. J. 1992, J. Quant. Spectrosc. Radiat. Transfer, 48, 147.Google Scholar
Schwenke, D. W., 1996, J. Phys. Chem., 100, 2867.Google Scholar
Simard, B., Hackett, P. A. 1991, J. Mol. Spectrosc., 148, 128.Google Scholar
Steele, R. E., Linton, C. 1978, J. Mol. Spectrosc., 69, 66.CrossRefGoogle Scholar
Viti, S., Tennyson, J. 1997, Mon. Not. R. Astron. Soc., in press.Google Scholar