Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-22T19:58:20.806Z Has data issue: false hasContentIssue false

Determination of Cosmological Parameters by Cosmic Microwave Background

Published online by Cambridge University Press:  25 May 2016

Naoshi Sugiyama*
Affiliation:
Department of Physics, Kyoto University Kyoto 606-01, Japan

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

After the sensational discovery of Cosmic Microwave Background (CMB) anisotropies by Differential Microwave Radiometer (DMR) boarded on the Cosmic Background Explore (COBE) (Smoot et al. 1992), the number of observational data of temperature fluctuations have been rapidly increasing (see e.g., White, Scott and Silk 1994) together with the understanding of physical processes of evolution of CMB anisotropies. Nowadays, CMB anisotropies are becoming one of the key observational object in the modern cosmology. CMB anisotropies provide us direct information at last scattering surface, i.e., redshift z ≈ 1000. Since the shape of the angular power spectrum of CMB anisotropies is highly sensitive to geometry of the universe, cosmological models and cosmological parameters, i.e., density parameter Ω0, Hubble constant h which is normalized by 100km/s/Mpc, cosmological constant Λ, baryon density ΩB and so on, CMB anisotropies are expected to be a new tool to understand our universe. Moreover, we can obtain information of thermal history of the universe after recombination (through the formation of secondary fluctuations and damping of primary fluctuations), physics of clusters of galaxies (through the Sunyaev-Zeldovich effect) and non-linear structure of the universe (through the gravitational lensing effect) from CMB anisotropies.

Type
II. Cosmic Microwave Background Radiation
Copyright
Copyright © Kluwer 1999 

References

Bunn, E., & Sugiyama, N. 1995, Ap. J., 446, 49.CrossRefGoogle Scholar
Hu, W., & Sugiyama, N. 1994, Phys. Rev. D50, 627.Google Scholar
Hu, W., & Sugiyama, N. 1995a, Ap.J., 444, 489.CrossRefGoogle Scholar
Hu, W., & Sugiyama, N. 1995b, Phys. Rev. D51, 2599.Google Scholar
Hu, W., Sugiyama, N. & Silk, J. 1997, Nature 386 37.CrossRefGoogle Scholar
Jones, M. et al., 1993, Nature 365, 320.CrossRefGoogle Scholar
Kamionkowski, M., Spergel, D. N. & Sugiyama, N. 1994, Ap.J. Letter, 426, L57.Google Scholar
Lyth, D., & Stewart, E.D. 1990, Phys. Lett., B252, 336.Google Scholar
Mather, J.C. et al., 1994, Ap.J., 420,439.Google Scholar
Ratra, B., & Peebles, P.J.E. 1995, Phys. Rev. D52, 1837.Google Scholar
Sachs, R. K., & Wolfe, A. M. 1967, Ap.J., 147, 73.CrossRefGoogle Scholar
Silk, J. 1968, Ap.J., 151, 459.CrossRefGoogle Scholar
Smoot, G. et al., 1992, Ap.J. Letter, 396, L1.Google Scholar
Sugiyama, N. 1995, Astrophys. J. Suppl., 100, 281.Google Scholar
Sugiyama, N., & Silk, J., 1994, Phys. Rev. Lett., 73, 509.Google Scholar
Sugiyama, N., Silk, J., & Vittorio, N. 1993, Ap.J. Letter, 419, L1.Google Scholar
Sunyaev, R.A., & Zeldovich, Ya.B. 1970, Ap. Space Sci., 9, 378.CrossRefGoogle Scholar
White, M., Scott, D., & Silk, J. 1993, ARA& A, 32, 319.CrossRefGoogle Scholar
Wilson, M. L. 1983, Ap.J., 273, 2.Google Scholar
Zeldovich, Ya.B., & Sunyaev, R.A. 1969, Ap. Space Sci., 4, 301.CrossRefGoogle Scholar