Hostname: page-component-cc8bf7c57-7lvjp Total loading time: 0 Render date: 2024-12-11T01:33:10.719Z Has data issue: false hasContentIssue false

Detecting Earth-Uranus Class Planets with the Space Mission COROT

Published online by Cambridge University Press:  26 May 2016

A. Léger
Affiliation:
Institut d'Astronomie Spatiale – CNRS, Orsay, France
A. Baglin
Affiliation:
DESPA & DARC, Observatoire de Paris-Meudon, Meudon, France
P. Barge
Affiliation:
Laboratoire d'Astrophysique de Marseille – CNRS, Marseille, France
P. Bordé
Affiliation:
DESPA & DARC, Observatoire de Paris-Meudon, Meudon, France
C. Defaÿ
Affiliation:
Laboratoire d'Astrophysique de Marseille – CNRS, Marseille, France
M. Deleuil
Affiliation:
Laboratoire d'Astrophysique de Marseille – CNRS, Marseille, France
D. Rouan
Affiliation:
DESPA & DARC, Observatoire de Paris-Meudon, Meudon, France
J. Schneider
Affiliation:
DESPA & DARC, Observatoire de Paris-Meudon, Meudon, France
A. Vuillemin
Affiliation:
Laboratoire d'Astrophysique de Marseille – CNRS, Marseille, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The space mission COROT can be considered as a DARWIN/TPF precursor, since it will contribute to the pre-DARWIN/TPF effort with its dedicated exoplanet program. COROT will survey more than 50 thousands stars, each one during five months, in order to detect transits of planets. Despite of the modest size of the telescope, the photon-noise limited performances may lead to the detection of several tens of “hot jupiters” and, more important, of a few planets of the Earth-Uranus class, i.e. with a size of typically 1.5 to 4 Earth radius. In the basic mode of operation (characterization of a planet by at least 3 detected transits), only planets with a short orbital period, and thus rather “hot” ones (T = 600K), should be discovered. However, one of the COROT's features is its capability to provide a wavelength dependent information, thanks to a prism in the optical path.

Type
Part V: Discovery and study of extrasolar planets - future
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Baglin, A. 1998, in “New Eyes to see Inside the Sun and Stars”, Deubner, et al. (eds), p. 301.Google Scholar
Bienaymé, O., Robin, A., & Crézé, M. 1987, A&A, 180, 94.Google Scholar
Bordé, P., Rouan, D., & Léger, A. 2000, submitted.Google Scholar
Chyba, , Whitmire, , & Reynolds, 1999, in “Protostars and Planets IV” (in press).Google Scholar
Defaÿ, C. 1999, in “Documentation for the preparation of the COROT space mission” (LAS - COR.SCI 990004.01), in French.Google Scholar
Grenon, M., 1999, in Highlights of Astronomy, Vol. 11B, Academic Publishers.Google Scholar
James, J. F., Mukai, T., Watanabe, T., Ishiguro, M., Nakamura, R. 1997, MNRAS, 288, 1022.Google Scholar
Koch, D., Borucki, W., & Cullers, K. 1996, JGR E, 101, 9297.Google Scholar
Mayor, M., & Queloz, D. 1995, Nature, 378, 355.Google Scholar
Rouan, D., Baglin, A., Barge, P., Copet, E., Deleuil, M., Léger, A., Schneider, J., Toublance, , & Vuillemin, A. 1999, Phys. and Chemist. of the Earth 24, 567.Google Scholar
Robichon, N., & Arenou, F. 2000, A&A, 355, 295.Google Scholar
Rosenblatt, F. 1971, Icarus, 14, 71.Google Scholar
Sartoretti, P., & Schneider, J. 1998, A&AS. 134, 553.Google Scholar
Schneider, J. 1996, Ap&SS, 241, 35.Google Scholar
Wuchterl, G, Guillot, T., & Lissauer, J. 1999, in “Protostars and Planets IV” (in press).Google Scholar