Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-12T09:50:11.787Z Has data issue: false hasContentIssue false

Cosmology from the 2dF QSO Redshift Survey

Published online by Cambridge University Press:  23 September 2016

Scott Croom
Affiliation:
Anglo-Australian Observatory, PO Box 296, Epping, NSW 1710, Australia
Brian Boyle
Affiliation:
Anglo-Australian Observatory, PO Box 296, Epping, NSW 1710, Australia
Tom Shanks
Affiliation:
Dept. of Physics, University of Durham, South Road, Durham, DH1 3LE, UK
Phil Outram
Affiliation:
Dept. of Physics, University of Durham, South Road, Durham, DH1 3LE, UK
Adam Myers
Affiliation:
Dept. of Physics, University of Durham, South Road, Durham, DH1 3LE, UK
Robert Smith
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead, CH41 1LD, UK
Lance Miller
Affiliation:
Department of Physics, Oxford University, 1 Keble Road, Oxford, OX1 3RH, UK
Ana Lopes
Affiliation:
Department of Physics, Oxford University, 1 Keble Road, Oxford, OX1 3RH, UK
Nicola Loaring
Affiliation:
Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UK
Fiona Hoyle
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead, CH41 1LD, UK

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The 2dF QSO Redshift Survey (2QZ) is now complete and available to the astronomical community (see www.2dfquasar.org). In this paper we review some of the principle science results to come from the survey, in particular concentrating on tests for cosmological parameters. Measurements of large-scale structure using the correlation function and power spectrum, together with determinations of the geometric distortion of clustering in redshift-space have been used. These produce a consistent picture which is well matched to the now standard cosmological model with Ωm ≃ 0.3 and ΩΛ ≃ 0.7. In particular, geometric distortions provide evidence for non-zero ΩΛ independent of type Ia supernovae, the CMB, or the assumed type of dark matter (e.g. CDM). However, gravitational lensing results in the form of potential arcminute separation lensed pairs and a stronger than expected anti-correlation between QSOs and foreground galaxies in groups and clusters may prove to be inconsistent with the current standard model. These issues certainly require further investigation.

Type
Session II: Formation of Large-Scale Structure 75
Copyright
Copyright © Astronomical Society of the Pacific 2005 

References

Adelberger, K. L., et al. 1998, ApJ, 505, 18 Google Scholar
Alcock, C., & Paczynski, B. 1979, Nature, 281, 358 CrossRefGoogle Scholar
Ballinger, W. E., Peacock, J. A., & Heavens, A. F. 1996, MNRAS, 282, 877 Google Scholar
Boyle, B. J., et al. 2000, MNRAS, 317, 1014.Google Scholar
Corbett, E. A., et al. 2003, MNRAS, 343, 705 Google Scholar
Croom, S. M., et al. 2002, MNRAS, 337, 275 Google Scholar
Croom, S.M., & Shanks, T. 1999, MNRAS, 307, L17 Google Scholar
Croom, S. M., et al. 2001a, MNRAS, 322, L29 CrossRefGoogle Scholar
Croom, S. M., et al. 2001b, MNRAS, 325, 483 CrossRefGoogle Scholar
Di Matteo, T., Croft, R. A. C., Springel, V., & Hernquist, L. 2003, ApJ, 593, 56 Google Scholar
Fan, X., et al. 2001, AJ, 122, 2833 CrossRefGoogle Scholar
Haiman, Z., & Hui, L. 2001, ApJ, 547, 27 Google Scholar
Hawkins, E., et al. 2003, MNRAS, 346, 78 Google Scholar
Lewis, I. J., et al. 2002, MNRAS, 333, 279 CrossRefGoogle Scholar
Lopes, A., & Miller, L. 2004, MNRAS, 348, 519 Google Scholar
Martini, P., & Weinberg, D. H. 2001, ApJ, 547, 12 Google Scholar
Miller, L., et al. 2004, MNRAS, 348, 395 CrossRefGoogle Scholar
Myers, A. D., et al. 2003, MNRAS, 342, 467 CrossRefGoogle Scholar
Outram, P. J., et al. 2001, MNRAS, 328, 174 Google Scholar
Outram, P. J., et al. 2003, MNRAS, 342, 483 Google Scholar
Outram, P. J., et al. 2004, MNRAS, 348, 745 Google Scholar
Peacock, J. A., & Dodds, S. J. 1996, MNRAS, 280, L19 Google Scholar
Percival, W. J., et al. 2001, MNRAS, 327, 1297 CrossRefGoogle Scholar
Perlmutter, S., et al. 1999, ApJ, 517, 565 Google Scholar
Press, W. H., & Schechter, P. 1974, ApJ, 187, 425 CrossRefGoogle Scholar
Schneider, D. P., et al. 2002, AJ, 123, 567 Google Scholar
Spergel, D. N., et al. 2003 ApJS, 148, 175 Google Scholar
Tadros, H., Efstathiou, G., & Dalton, G. 1998, MNRAS, 296, 995 Google Scholar
Watson, F. G., et al. 2000, SPIE, 4008, 123 Google Scholar