Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T00:27:34.287Z Has data issue: false hasContentIssue false

Cool white dwarfs: cooling theory and galactic implications

Published online by Cambridge University Press:  25 May 2016

G. Chabrier*
Affiliation:
C.R.A.L., Ecole Normale Supérieure, 69364 Lyon Cedex 07, France [email protected]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The understanding of the physics of cool white dwarfs (WD) bears important consequences for Galactic evolution and cosmological implications. The observed cutoff in the disk WD luminosity function (WDLF) yields the determination of the age of the Galactic disk, as suggested initially by Winget et aI. (1987). The recent microlensing observations toward the LMC (Alcock et al., 1996) suggest that WDs might provide a substantial fraction of the halo dark matter (Chabrier, Segretain & Méra, 1996; Adams & Laughlin, 1996). The correct analysis of these applications implies a correct WD cooling theory and reliable photometric predictions, which in turn require accurate interior and atmosphere models. Important improvement in this latter domain has been accomplished recently by Bergeron, Saumon & Wesemael (1995) and Bergeron, Wesemael & Beauchamp (1995), which yields the determination of photometric color indices and bolometric corrections down to 4000 K (see Leggett, these proceedings). In this paper, we review the most recent improvement in WD interior and cooling theory.

Type
Evolved Stars
Copyright
Copyright © Kluwer 1997 

References

Abrikosov, A.A., 1961, J.E.T.P., 12, 1254 Google Scholar
Adams, F. & Laughlin, G., 1996, ApJ, 468, 586 CrossRefGoogle Scholar
Alcock, C. et al., 1996, astroph-9604176 Google Scholar
Barrat, J.L., Hansen, J.P. & Mochkovitch, R., 1988, A&A, 199, L15 Google Scholar
Bergeron, P., Saumon, D., & Wesemael, F, 1995, ApJ 443, 764 CrossRefGoogle Scholar
Bergeron, P., Wesemael, F. & Beauchamp, A., 1995, PASP, 107, 1047 CrossRefGoogle Scholar
Buffett, B.A., Huppert, H.E., Lister, J.R. & Woods, A.W., 1992, Nature, 356, 329 CrossRefGoogle Scholar
Chabrier, G., Segretain, L. & Méra, D., 1996, ApJ, 468, L21 CrossRefGoogle Scholar
Dubin, D., 1990, Phys. Rev. A, 42, 4972 CrossRefGoogle Scholar
García-Berro, E., Hernanz, M., Isern, J. & Mochkovitch, R., 1988, A&A, 193, 141 Google Scholar
Hernanz, M., García-Berro, E., Isern, J., Mochkovitch, R., Segretain, L. & Chabrier, G., 1994, ApJ, 434, 652 CrossRefGoogle Scholar
Ichimaru, S., Iyetomi, H. & Ogata, S., 1988, ApJ, 334, L17 CrossRefGoogle Scholar
Isern, J., Mochkovitch, R., Hernanz, M., Garcia-Berro, E., 1997, ApJ, submitted Google Scholar
Lamb, D.Q. & VanHorn, H.M., 1975, ApJ, 200, 306 CrossRefGoogle Scholar
Landau, L. & Lifshitz, E., 1980, Statistical Physics , Pergamon Press Google Scholar
Loper, D.E., 1984, Adances in Geophysics, 26, 1 CrossRefGoogle Scholar
Liebert, J., Dahn, C.C. & Monet, D.G., 1988, ApJ, 332, 891 CrossRefGoogle Scholar
Mazzitelli, I. & D'Antona, F., 1986, 308, 706 CrossRefGoogle Scholar
Mestel, L. & Ruderman, M.A., 1967, M.N.R.A.S., 136, 27 CrossRefGoogle Scholar
Mochkovitch, R., 1983, A&A, 122, 212 Google Scholar
Oswalt, T.D., Smith, J.A., Wood, M.A. & Hintzen, P., 1996, Nature, 382, 692 CrossRefGoogle Scholar
Ruiz, M.T., Bergeron, P., Leggett, S., & Anguita, C, 1995, ApJ, 455, L159 CrossRefGoogle Scholar
Salpeter, E.E., 1961, ApJ, 134, 669 CrossRefGoogle Scholar
Segretain, L. & Chabrier, G., 1993, A&A, 271, L13 Google Scholar
Segretain, L., Chabrier, G., Hernanz, M., Garcia-Berro, E., Isern, J. & Mochkovitch, R., 1994, ApJ, 429, 641 CrossRefGoogle Scholar
Stevenson, D., 1980, J. Physique Sup., 41, C261 Google Scholar
VanHorn, H.M., 1968, ApJ, 151, 227 CrossRefGoogle Scholar
Winget, D. et al., 1987, ApJ, 315, L77 CrossRefGoogle Scholar
Wood, M. A., 1992, ApJ, 386, 536 CrossRefGoogle Scholar