Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T18:05:41.138Z Has data issue: false hasContentIssue false

Circumstellar Molecular Envelopes

Published online by Cambridge University Press:  25 May 2016

G. A. Fuller
Affiliation:
Physics Department, UMIST, P.O. Box 88, Manchester, M60 1QD, UK
E. F. Ladd
Affiliation:
Five College Radio Astronomy Observatory, University of Massachusetts, Amherst, MA 01003, USA Department of Physics, Bucknell University Lewisburg, PA 17837, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The results of C17O and C18O observations of low luminosity young stars are discussed and the derived properties of the circumstellar molecular envelopes described. Much of the circumstellar material is quiescent and cold. The youngest sources have envelopes which contain up to ∼ 0.3 M⊙ of material within 3000–4000 AU of the central star. From a survey of sources in Taurus, both the timescale and mechanism of clearing of the circumstellar region are investigated. Neither the observed outflows nor standard infall models alone are capable of clearing the circumstellar regions quickly enough. Maps of the circumstellar material around two very young sources suggest that the stars form from flattened configurations of material.

Type
V. Low- and High-Mass Protostars and Their Environment
Copyright
Copyright © Kluwer 1997 

References

André, P., and Montmerle, T. 1994, ApJ, 420, 837.Google Scholar
André, P., Ward-Thompson, D., and Barsony, M. 1993, ApJ, 406, 122.Google Scholar
Bontemps, S., Andre, P., Terebey, S., and Cabrit, S. 1996, AA, 311, 858.Google Scholar
Ceccarelli, C., Haas, M. R., Hollenbach, D. J., and Rudolph, A. L. 1997, ApJ, 476, 771.Google Scholar
Chandler, C. J., Terebey, S., Barsony, M., Moore, T. J. T., and Gautier, T. N. 1996, ApJ, 471, 308.Google Scholar
Chen, H., Myers, P. C., Ladd, E. F., and Wood, D. O. S. 1995, ApJ, 445, 377.Google Scholar
Foster, P. N., and Chevalier, R. A. 1993, ApJ, 416, 303.Google Scholar
Fuller, G. A., Ladd, E. F., and Hodapp, K. -W. 1996, ApJL, 463, L97.Google Scholar
Fuller, G. A., Ladd, E. F., Padman, R., Myers, P. C., and Adams, F. C. 1995, ApJ, 454, 862.Google Scholar
Galli, D., and Shu, F. H. 1993a, ApJ, 417, 220.Google Scholar
Galli, D., and Shu, F. H. 1993b, ApJ, 417, 243.Google Scholar
Hartmann, L., Calvet, N., and Boss, A, 1996, ApJ, 464, 387.Google Scholar
Hayashi, M., Ohashi, N., and Miyama, S. M. 1993, ApJ, 418, 71.CrossRefGoogle Scholar
Henriksen, R., André, P., and Bontemps, S. 1997, AA, in press.Google Scholar
Ladd, E. F., Fuller, G. A., and Deane, J. R. 1997, ApJ in press.Google Scholar
Ladd, E. F., Fuller, G. A., Padman, R., Myers, P. C., and Adams, F. C. 1995, ApJ, 439, 771.Google Scholar
Li, Z-Y, and Shu, F. H. 1996, ApJ 472, 211.Google Scholar
Li, Z-Y, and Shu, F. H. 1997, ApJ 475, 237.Google Scholar
Masson, C. R., and Chernin, L. M. 1993, ApJ, 414, 230.Google Scholar
Moriarty-Schieven, G. H., Wannier, P. G., Mangum, J. G., Tamura, M., and Olmsted, V. K. 1995, ApJ, 455, 190.Google Scholar
Moriarty-Schieven, G. H., Wannier, P. G., Tamura, M., and Keene, J. 1994, ApJ, 400, 260.Google Scholar
Myers, P. C., and Ladd, E. F. 1993, ApJL, 413, 47.Google Scholar
Ohashi, N., and Hayashi, M., Kawabe, R., and Ishiguro, M. 1996, ApJ, 466, 317.Google Scholar
Padman, R., and Richer, J. S. 1994, APSS, 216, 129.Google Scholar
Parker, N. D., Padman, R., and Scott, P. F. 1991, MNRAS, 252, 442.Google Scholar
Reipurth, B., Chini, R., Krugel, E., Kreysa, E., and Sievers, A. 1993, AA, 273, 221.Google Scholar
Sandell, G., Knee, L. B. G., Aspin, C., Robson, I. E., and Russell, A. P. G. 1994, AA, 285, 1.Google Scholar
Saraceno, P., André, P., Ceccarelli, C., Griffin, M., and Molinari, S. 1996, AA, 309, 827.Google Scholar
Shu, F. H. 1977, ApJ, 214, 488.Google Scholar
Terebey, S., Chandler, C. J., and André, P. 1993, ApJ, 414, 759.Google Scholar