Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T16:05:50.122Z Has data issue: false hasContentIssue false

Chemical Evolution of Spiral Galaxies from Redshift 4 to the Present

Published online by Cambridge University Press:  19 July 2016

U. Fritze - v. Alvensleben
Affiliation:
Universitäts-Sternwarte, Göttingen, Germany
U. Lindner
Affiliation:
Universitäts-Sternwarte, Göttingen, Germany
K. J. Fricke
Affiliation:
Universitäts-Sternwarte, Göttingen, Germany

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

ISM abundances in nearby spiral galaxies are well known from HII region studies (Zaritsky et al. 1994). While early type spirals, Sa, Sb, have rather uniform abundances and a narrow range of present star formation rates (SFR) the galaxy-to-galaxy variations both in HII region abundances and in present SFR increase towards late spiral types Sc, Sd (see e.g. Kennicutt & Kent 1983). ISM abundances of spiral galaxies or their progenitors up to the highest redshifts can be studied via the absorption properties imprinted in the spectra of background QSOs. While MgII- and CIV- absorption lines are produced in the low column density gas of the extended haloes around galaxies, the Damped Lyα Absorption (DLA) is believed to originate in (proto-)galactic disks. High resolution spectroscopy of a large number of metal lines associated with DLA systems reveal the redshift evolution of ISM abundances from z ≳ 4 to z ~ 0.6.

Type
Conference Papers in order of Presentation
Copyright
Copyright © 2002 

References

Bahcall, J. N. et al., 1993, ApJS 81, 1.CrossRefGoogle Scholar
Fritze - v. Alvensleben, U., 1995, in QSO Absorption Lines , ESO Workshop, p. 81.CrossRefGoogle Scholar
Fritze - v. Alvensleben, U., 1998, in Abundance Ratios of the Oldest Stars, Highlights of Astronomy, in press .Google Scholar
Fritze - v. Alvensleben, , Fricke, K. J., 1995, IAU Symp. 164, 457.Google Scholar
Fritze - v. Alvensleben, U., Kröger, H., Fricke, K. J., Loose, H.-H., 1989, A&A 224, L1.Google Scholar
Fritze - v. Alvensleben, U., Kröger, H., Fricke, K. J., 1989, A&A 246, L59.Google Scholar
Kennicutt, R. C., 1992, ApJS 79, 255.CrossRefGoogle Scholar
Kennicutt, R. C., Kent, S. M., 1983, ApJ 88, 1094.CrossRefGoogle Scholar
Matteucci, F., 1991, ASP Conf. Ser. 20, 539.Google Scholar
Lindner, U., Fritze - v. Alvensleben, , Fricke, K. J., 1996, A&A 316, 123.Google Scholar
Lindner, U., Fritze - v. Alvensleben, , Fricke, K. J., 1997, in Structure and Evolution of the IGM from QSO Absorption Line Systems , ed. Petitjean, , in press .Google Scholar
Lindner, U., Fritze - v. Alvensleben, , Fricke, K. J., 1998, this volume .Google Scholar
Lu, L., Sargent, W. L. W., Barlow, , et al., 1996, ApJS 107, 475.CrossRefGoogle Scholar
Pettini, M., Smith, L. J., King, D. L., Hunstead, R. W., 1997, ApJ 486, 665.CrossRefGoogle Scholar
Stengler-Larrea, E., 1995, in QSO Absorption Lines , ESO Workshop, p. 199.CrossRefGoogle Scholar
van den Hoek, L. B., Groenewegen, M. A. T., A&AS 123, 305.Google Scholar
Woosley, S. E., Weaver, T. A., 1995, ApJS 101, 181.CrossRefGoogle Scholar
Zaritsky, D., Kennicutt, R. C., Huchra, J. P., 1994, ApJ 420, 87.CrossRefGoogle Scholar