Hostname: page-component-cc8bf7c57-n7qbj Total loading time: 0 Render date: 2024-12-12T04:48:26.009Z Has data issue: false hasContentIssue false

Chemical and Thermal History of the Intracluster Medium

Published online by Cambridge University Press:  26 May 2016

Hans Böhringer*
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Garching, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Clusters of galaxies can be seen as giant astrophysical laboratories enclosing matter in a large enough volume, so that the matter composition can be taken as representing the composition of our Universe. X-ray observations allow a very precise investigation of the physical properties of the intracluster plasma allowing us to probe the cluster structure, determine its total mass, and measure the baryon fraction in clusters and in the Universe as a whole. We can determine the abundance of heavy elements from O to Ni which originate from supernova explosions and draw from this important conclusions on the history of star formation in the cluster galaxy population. From the entropy structure of the intracluster medium we obtain constraints on the energy release during early star bursts. with the observational capabilities of the X-ray observatories XMM-Newton and Chandra this field of research is rapidly evolving. In particular, first detailed observations of the intracluster medium of the Virgo cluster around M87 have provided new insights. The present contribution gives an account of the current implications of the intracluster medium observations, but more importantly illustrates the prospects of this research for the coming years.

Type
Part 1. Census
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Allen, S.W., Schmidt, R.W., Fabian, A.C., 2002, MNRAS, 334, L11.CrossRefGoogle Scholar
Balogh, M.L., Pearce, F.R., Bower, R.G. & Kay, S.T., 2001, MNRAS, 326, 1228.CrossRefGoogle Scholar
Belsole, E., Sauvageot, J.L., Böhringer, H., et al., 2000, A&A, 365, L188.Google Scholar
Böhringer, H., Belsole, E., Kennea, J., et al., 2001, A&A, 365, L18.Google Scholar
Böhringer, H., Matsushita, K., Ikebe, Y., et al. 2002, A&A, 382, 804.Google Scholar
Böhringer, H., Matsushita, K., Churazov, E., Finoguenov, A., Chen, Y., 2003, A&A, 382, 804.Google Scholar
Bryan, G.L., 2000, ApJ, 544, L1.CrossRefGoogle Scholar
Buote, D.A., 1999, MNRAS, 309, 685.CrossRefGoogle Scholar
De Grandi, S., & Molendi, S., 2001,Google Scholar
Ettori, S., Tozzi, P., Rosati, P., 2002, A&A, 398, 879.Google Scholar
Ezawa, H., Fukazawa, Y., Makishima, K., et al., 1997, ApJ, 490, L33.CrossRefGoogle Scholar
Fabian, A.C., 1994, ARA&A, 32, 277.Google Scholar
Finoguenov, A., David, L.P., Ponman, T.J., 2000, ApJ, 514, 188.CrossRefGoogle Scholar
Finoguenov, A., Arnaud, M., David, L.P., 2001a, ApJ, 555, 191.CrossRefGoogle Scholar
Finoguenov, A., Reiprich, T.H., Böhringer, H., 2001b, A&A, 368, 749.Google Scholar
Finoguenov, A., Matsushita, K., Böhringer, H., et al., 2002, A&A, 381, 21.Google Scholar
Finoguenov, A., Borgani, S., Tornatore, L., Böhringer, H., 2003, A&A, 398, L35.Google Scholar
Fukazawa, Y., Makishima, K., Tamura, T., et al., 1998, PASP, 50, 187.Google Scholar
Ivanov, V., Hamuy, M. & Pinto, P.A., 2000, ApJ, 542, 588.CrossRefGoogle Scholar
Iwamoto, K., Brachwitz, F., Nomoto, K., et al., 1999, ApJS, 125, 439.CrossRefGoogle Scholar
Lloyd-Davies, E.J., Ponman, T.J., Cannon, D.B., 2000, MNRAS, 315, 689.CrossRefGoogle Scholar
Madau, P., Ferguson, H.C., Dickinson, M., et al., 1996, MNRAS, 283, 1388.CrossRefGoogle Scholar
Matsumoto, H., Koyama, K., Awaki, H., et al., 1996, PASP, 48, 201.Google Scholar
Matsushita, K., Belsole, E., Finoguenov, A., Böhringer, H., 2002, A&A, 386, 77.Google Scholar
Matsushita, K., Finoguenov, A., Böhringer, H., 2003a, A&A,Google Scholar
Matsushita, K., et al. 2003, A&A submitted.Google Scholar
Molendi, S. & Pizzolato, F., 2001, ApJ, 560, 194.CrossRefGoogle Scholar
Molendi, S., 2002, ApJ, 580, 815.CrossRefGoogle Scholar
Muanwong, O., Thomas, P.A., Kay, S.T., et al., 2001, ApJ, 552, L27.CrossRefGoogle Scholar
Muanwong, O., Thomas, P.A., Kay, S.T., Pearce, F.R., 2002, MNRAS, 336, 527.CrossRefGoogle Scholar
Navarro, J.F., Frenk, C.S., White, S.D.M., 1997, ApJ, 490, 493.CrossRefGoogle Scholar
Nomoto, K., Thielemann, F.-K., Yokoi, K., 1984, ApJ, 286, 644.CrossRefGoogle Scholar
Nomoto, K., Iwamoto, K., Nakasato, N., et al., 1997, Nucl. Phys., A621, 467.CrossRefGoogle Scholar
Nulsen, P.E.J., 1986, MNRAS, 221, 377.CrossRefGoogle Scholar
Pearce, F.R., Thomas, P.A., Couchman, H.M.P., Edge, A.C., 2000, MNRAS, 317, 1029.CrossRefGoogle Scholar
Ponman, T.J., Cannon, D.B., Navarro, J.F., 1999, Nature, 397, 135.CrossRefGoogle Scholar
O'Meara, J.M., Tytler, D., Kirkman, D., et al., 2001, ApJ, 552, 718.CrossRefGoogle Scholar
Ponman, T.J., Sanderson, A.J.R., Finoguenov, A. 2003, MNRAS, 343, 331.CrossRefGoogle Scholar
Pratt, G.W. & Arnaud, M., 2002, A&A, 394, 375.Google Scholar
Reiprich, T.H., 2001, , Ludwig-Maximilians-Universität München.Google Scholar
Reiprich, T.H. & Böhringer, H., 2002, ApJ, 567, 716.CrossRefGoogle Scholar
Renzini, A., Ciotti, L., D'Ercole, A., Pellegrini, S., 1993, ApJ, 419, 52.CrossRefGoogle Scholar
Thomas, P.A., Fabian, A.C., & Nulsen, P.E.J., 1987, MNRAS, 228, 973.CrossRefGoogle Scholar
Turner, M.S., 2002, ApJL 576, L101.CrossRefGoogle Scholar
Voit, M. & Bryan, G.L., 2001, Nature, 414, 425.CrossRefGoogle Scholar
Voit, M. & Bryan, G.L., Balogh, M.L., Bower, R.G., 2002, ApJ, 576, 601.CrossRefGoogle Scholar
Voit, M. & Ponman, T.J., 2003, ApJ, 594, L75.CrossRefGoogle Scholar
White, S.D.M., Navarro, J.F., Evrard, A.E., Frenk, C.S., 1993, Nature, 366, 429.CrossRefGoogle Scholar
Wu, X.P. & Xue, Y.-J., 2002, ApJ, 569, 112; ApJ, 572, L19.CrossRefGoogle Scholar
Woosley, S.E. & Weaver, T.A., 1995, ApJS, 101, 181.CrossRefGoogle Scholar