Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T16:04:00.245Z Has data issue: false hasContentIssue false

Chaos in Nonlinear Dynamo Models

Published online by Cambridge University Press:  19 July 2016

J. Kurths
Affiliation:
Arbeitsgruppe Nichtlineare Dynamik der Max-Planck-Gesellschaft an der Universität Potsdam, Am Neuen Palais, D-O-1571 Potsdam, Germany
A. Brandenburg
Affiliation:
NORDITA, Blegdamsvej 17, DK-2100 Copenhagen ⊘, Denmark
U. Feudel
Affiliation:
Arbeitsgruppe Nichtlineare Dynamik der Max-Planck-Gesellschaft an der Universität Potsdam, Am Neuen Palais, D-O-1571 Potsdam, Germany
W. Jansen
Affiliation:
Arbeitsgruppe Nichtlineare Dynamik der Max-Planck-Gesellschaft an der Universität Potsdam, Am Neuen Palais, D-O-1571 Potsdam, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two nonlinear dynamos have been analyzed by numerical means: 3D-simulation of the magneto-hydrodynamic equations and qualitative analysis of a simplified low-dimensional mean field model. It turns out that both are capable of deterministic chaos in a certain parameter range. As the basic tool the calculation of Lyapunov exponents has been used.

Type
2. Long-Term Variability of the Solar Magnetic Cycle
Copyright
Copyright © Kluwer 1993 

References

Brandenburg, A., Jennings, R. L., Nordlund, Å. and Stein, R.F.: 1991, in Riste, T. and Sherrington, D., ed(s)., Spontaneous formation of space-time structures and criticality , Nato ASI Series, Dordrecht, 371 Google Scholar
Eddy, J.A.: 1976, Science 286, 1198 Google Scholar
Feudel, U. and Jansen, W.: 1992, Int. J. Bifurcation & Chaos 2,Google Scholar
Feudel, U., Jansen, W., and Kurths, J.: 1993, Int. J. Bifurcation & Chaos 3, in press Google Scholar
Jones, C. A. and Weiss, N. O. and Cattaneo, F.: 1985, Physica 14D, 161 Google Scholar
Krause, F. and Rädler, K.-H.: 1980, Mean-Field Magnetohydrodynamics and Dynamo Theory , Akademie-Verlag, Berlin Google Scholar
Kurths, J. and Brandenburg, A.: 1991, Phys. Rev. A44, R3427 Google Scholar
Malinetzky, G.G., Ruzmaikin, A.A. and Samarsky, A.A.: 1986, A Model for Long Variations of the Solar Activity , Preprint Google Scholar
Meneguzzi, M. and Pouquet, A.: 1989, J. Fluid Mech. 205, 297 CrossRefGoogle Scholar
Nordlund, Å., Brandenburg, A., Jennings, R. L., Rieutord, M., Ruokolainen, J., Stein, R. F. and Tuominen, I.: 1992, Astrophys. J. 392, 647 CrossRefGoogle Scholar
Ruelle, D.: 1989, Chaotic Evolution and Strange Attractors , Cambridge University Press Google Scholar
Schuster, H.G.: 1984, Deterministic Chaos , VCH, Weinheim Google Scholar
Zeldovich, Ya. B., Ruzmaikin, A. A. and Sokoloff, D. D.: 1983, Magnetic Fields in Astrophysics , Gordon & Breach, New York Google Scholar