Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-02T22:00:06.720Z Has data issue: false hasContentIssue false

Blue Compact Galaxies and the Primordial 4Helium Abundance

Published online by Cambridge University Press:  25 May 2016

Trinh Xuan Thuan
Affiliation:
Astronomy Department, University of Virginia, P.O. Box 3818, University Station, Charlottesville, VA 22903, USA
Yuri I. Izotov
Affiliation:
Main Astronomical Observatory, Ukrainian National Academy of Sciences, Goloseevo, Kiev 03680, Ukraine

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Blue compact galaxies (BCG) are ideal objects in which to derive the primordial 4He abundance because they are chemically young and have not had a significant stellar He contribution. We discuss a self-consistent method which makes use of all the brightest He I emission lines in the optical range and solves consistently for the electron density of the He II zone. We pay particular attention to electron collision and radiative transfer as well as underlying stellar absorption effects which may make the He I emission lines deviate from their recombination values. Using a large homogeneous sample of 45 low-metallicity H II regions in BCGs, and extrapolating the Y-O/H and Y-N/H linear regressions to O/H = N/H = 0, we obtain Yp = 0.2443±0.0015, in excellent agreement with the weighted mean value Yp = 0.2452±0.0015 obtained from the detailed analysis of the two most metal-deficient BCGs known, I Zw 18 and SBS 0335-052. The derived slope dY/dZ = 2.4±1.0 is in agreement with the value derived for the Milky Way and with simple chemical evolution models with homogeneous outflows. Adopting Yp = 0.2452±0.0015 leads to a baryon-to-photon ratio of (4.7+1.0-0.8) × 10−10 and to a baryon mass fraction in the Universe ωbh250 = 0-068+0.015-0.012, consistent with the value derived from the primordial D abundance of Burles &Tytler (1998).

Type
3. Abundances of D, 3He and 4He
Copyright
Copyright © Astronomical Society of the Pacific 2000 

References

Bi, H., & Davidsen, A. F. 1997, ApJ, 479, 523 Google Scholar
Bonifacio, P. & Molaro, P. 1997, MNRAS, 285, 847 CrossRefGoogle Scholar
Brocklehurst, M. 1972, MNRAS, 157, 211 Google Scholar
Burles, S., & Tytler, D. 1998a, ApJ, 507, 732 1998, Phys. Rev. D, 58, 063506 Google Scholar
Izotov, Y. I., & Thuan, T. X. 1998a, ApJ, 500, 188 (IT98a) Google Scholar
Izotov, Y. I., & Thuan, T. X. 1998b, ApJ, 497, 227 (IT98b) Google Scholar
Izotov, Y. I., & Thuan, T. X. 1999, ApJ, 511, 639 CrossRefGoogle Scholar
Izotov, Y. I., Thuan, T. X., & Lipovetsky, V. A. 1994, ApJ, 435, 647 (ITL94) Google Scholar
Izotov, Y. I., Thuan, T. X., & Lipovetsky, V. A. 1997, ApJS, 108, 1 (ITL97) Google Scholar
Izotov, Y. I., Lipovetsky, V.A., Guseva, N.G., Kniazev, A. Y., Neizvestny, S. I. & Stepanian, J. A. 1993, Astron. Astrophys. Trans., 3, 193 Google Scholar
Izotov, Y. I., Chaffee, F. H., Foltz, C. B., Green, R. F., Guseva, N. G., Thuan, T. X. 1999, ApJ, 527, 757 Google Scholar
Kingdon, J., & Ferland, G. J. 1995, ApJ, 442, 714 CrossRefGoogle Scholar
Levshakov, S. A., Kegel, W. H., & Takahara, F. 1998, MNRAS, 302, 707 Google Scholar
Markarian, B. E., Lipovetsky, V.A., Stepanian, J.A., Erastova, L. K., & Shapovalova, A. I. 1989, Commun. Special Astrophys. Obs., 62, 5 Google Scholar
Olive, K. A., Skillman, E. D., & Steigman, G. 1997, ApJ, 483, 788 (OSS97) CrossRefGoogle Scholar
Pagel, B. E. J., Simonson, E. A., Terlevich, R. J., & Edmunds, M. G. 1992, MNRAS, 255, 325 Google Scholar
Pagel, B. E. J., Terlevich, R. J., & Melnick, J. 1986, PASP, 98, 1005 Google Scholar
Peimbert, M., & Torres-Peimbert, S. 1974, ApJ, 193, 327 CrossRefGoogle Scholar
Peimbert, M., & Torres-Peimbert, S. 1976, ApJ, 203, 581 Google Scholar
Peimbert, M. & Peimbert, A. 2000, this volume Google Scholar
Pinsonneault, M. H., Walker, T. P., Steigman, G., & Naranyanan, V. K. 1999, ApJ, 527, 180 Google Scholar
Rauch, M., Miralda-Escudé, J., Sargent, W. L. W., Barlow, T. A., Weinberg, D. H., Hernquist, L., Katz, N., Cen, R., & Ostriker, J. P. 1997, ApJ, 489, 7 CrossRefGoogle Scholar
Robbins, R. R. 1968, ApJ, 151, 511 Google Scholar
Rood, R. T., Bania, T. M., Balser, D. S., & Wilson, T. L. 1998, Space Sci. Rev., 84, 185 Google Scholar
Salzer, J. J., MacAlpine, G. M., & Boroson, T. A. 1989, ApJS, 70, 447 Google Scholar
Smits, D. P. 1996, MNRAS, 278, 683 CrossRefGoogle Scholar
Songaila, A., Wampler, E. J., & Cowie, L. L. 1997, Nature, 385, 137 CrossRefGoogle Scholar
Stasinska, G., & Schaerer, D. 1999, A&A, 351, 72 Google Scholar
Vauclair, S., & Charbonnel, C. 1998, ApJ, 502, 372 Google Scholar
Vílchez, J. M., & Pagel, B. E. J. 1988, MNRAS, 231, 257 Google Scholar
Weinberg, D. H., Miralda-Escudé, J., Hernquist, L., & Katz, N. 1997, ApJ, 490, 564 Google Scholar
Zhang, Y., Meiksin, A., Anninos, P., & Norman, M. L. 1998, ApJ, 495, 63 Google Scholar