Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-12T08:33:26.606Z Has data issue: false hasContentIssue false

Bars and the connection between dark and visible matter

Published online by Cambridge University Press:  26 May 2016

E. Athanassoula*
Affiliation:
Observatoire, 2 place Le Verrier, 13248 Marseille cedex 04, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Isolated barred galaxies evolve by redistributing their internal angular momentum, which is emitted mainly at the inner disc resonances and absorbed mainly at the resonances in the outer disc and the halo. This causes the bar to grow stronger and its pattern speed to decrease with time. A massive, responsive halo enhances this process. I show correlations and trends between the angular momentum absorbed by the halo and the bar strength, pattern speed and morphology. It is thus possible to explain why some disc galaxies are strongly barred, while others have no bar, or only a short bar or an oval. in some cases, a bar is found also in the halo component. This “halo bar” is triaxial, but more prolate-like, is shorter than the disc bar and rotates with roughly the same pattern speed. I finally discuss whether bars can modify the density cusps found in cosmological CDM simulations of dark matter haloes.

Type
Part 8: Bars
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Athanassoula, E. 1992, MNRAS, 259, 345.CrossRefGoogle Scholar
Athanassoula, E. 2002, ApJ, 569, L83 (A02).CrossRefGoogle Scholar
Athanassoula, E. 2003, MNRAS, 341, 1179 (A03).CrossRefGoogle Scholar
Athanassoula, E., & Misiriotis, A. 2002, MNRAS, 330, 35 (AM02).CrossRefGoogle Scholar
Athanassoula, E., & Sellwood, J. A. 1986, MNRAS, 221, 213.CrossRefGoogle Scholar
Berentzen, I., Athanassoula, E., Heller, C. H., & Fricke, K. J. 2003, astro-ph/0309664.Google Scholar
Gadotti, D. A. & de Souza, R. E. 2003, ApJ, 583, L75.CrossRefGoogle Scholar
Grösbol, P., Pompei, E., & Patsis, P. A. 2002, in Galactic Discs: Kinematics, Dynamics and Perturbations, eds. Athanassoula, E., Bosma, A., and Mujica, R., ASP Conf. Ser. Vol. 275, 305.Google Scholar
Heller, C. H., & Shlosman, I. 1994, ApJ, 424, 84.CrossRefGoogle Scholar
Hernquist, L., & Weinberg, M. D. 1992, ApJ, 400, 80.CrossRefGoogle Scholar
Holley-Bockelmann, K., Weinberg, M. D., & Katz, N. 2003, astro-ph/0306374 (HBWK).Google Scholar
Lynden-Bell, D., & Kalnajs, A. J. 1972, MNRAS, 157, 1 (LBK).CrossRefGoogle Scholar
O'Neill, J. K., & Dubinski, J. 2003, MNRAS, 346, 251.CrossRefGoogle Scholar
Ostriker, J. P., & Peebles, P. J. E. 1973, ApJ, 186, 467.CrossRefGoogle Scholar
Sellwood, J. A. 2003, ApJ, 567, 638 (S03).CrossRefGoogle Scholar
Skokos, Ch., Patsis, P., & Athanassoula, E. 2002, MNRAS, 333, 847.CrossRefGoogle Scholar
Tremaine, S., & Weinberg, M. D. 1984, MNRAS, 209, 729.CrossRefGoogle Scholar
Valenzuela, O., & Klypin, A. 2003, MNRAS, 345, 406 (VK).CrossRefGoogle Scholar
Weinberg, M. 1985, MNRAS, 213, 451.CrossRefGoogle Scholar
Weinberg, M. 2001, MNRAS, 328, 321.CrossRefGoogle Scholar
Weinberg, M., & Katz, N. 2002, ApJ, 580, 627.CrossRefGoogle Scholar