Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T15:45:30.843Z Has data issue: false hasContentIssue false

ATMOSPHERIC STRUCTURE OF THE OUTER PLANETS FROM THERMAL EMISSION DATA

Published online by Cambridge University Press:  14 August 2015

Glenn S. Orton*
Affiliation:
Jet Propulsion Laboratory California Institute of Technology Pasadena, California 91103

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Determination of atmospheric temperature structure is of paramount importance to the understanding of planetary atmospheric structure. The most powerful methods for determining atmospheric structure exploit the opacities provided by the collision induced H2 dipole and the ν4 fundamental of CH4. In addition to earth-based observations, useful measurements of thermal emission from Jupiter and Saturn have been or soon will be made by several spacecraft, with results cross-checked with independent radio occultation results. For Uranus and Neptune, only a limited set of whole-disk earth-based data exists. All the outer planets show evidence for stratospheric temperature inversions; temperature minima range from about 105 K for Jupiter and 87 K for Saturn, to roughly 55 K for Uranus and Neptune. In addition to better data, remaining problems may be resolved by better quantitative understanding of gas and aerosol absorption and scattering properties, chemical composition, and non-LTE source functions. Ultimately, temperature structure results must be supplemented by quantitative energy equilibrium models which will allow some meaning to be given to the relationships between such characteristics as temperature, clouds, incident solar and planetary radiation, and chemical composition.

Type
Research Article
Copyright
Copyright © Reidel 1981 

References

Appleby, J.F., Hogan, J., 1980 (in preparation).Google Scholar
Atreya, S., 1980, communication presented at 23rd Plenary Session of COSPAR, Budapest.Google Scholar
Berge, G.L., Gulkis, S., 1976, In “Jupiter”, Gehrels, T. ed., U. of Arizona Press, p. 621.Google Scholar
Birnbaum, G., 1978, J. Quant. Spectrosc. Rad. Transf. 19, 51.Google Scholar
Cess, R.D., Khetan, S., 1973, J. Quant. Spectrosc. Rad. Transf. 13, 995.Google Scholar
Cess, R.D., Chen, S.C., 1975, Icarus 26, 444.Google Scholar
Chahine, M.T., 1972, J. Atmos. Sci. 29, 741.Google Scholar
Chahine, M.T., 1975, J. Atmos. Sci. 32, 1946.Google Scholar
Conrath, B.J., 1972, J. Atmos. Sci. 29, 1262.Google Scholar
Conrath, B.J., Gautier, D., 1980, In “Interpretation of Remotely Sensed Data”, Deepak, A. ed., Academic Press.Google Scholar
Courtin, R., Coron, N., Encrenaz, T., Gispert, R., Bruston, P., Leblanc, J., Dambier, G., Vidal-Madjar, A., 1977, Astron. Astrophys. 60, 115.Google Scholar
Courtin, R., Gautier, D., Lacombe, A., 1978, Astron. Astrophys. 63, 97.Google Scholar
Courtin, R., Gautier, D., Lacombe, A., 1979, Icarus 37, 236.Google Scholar
Danielson, R.E., 1977, Icarus 30, 462.Google Scholar
Deepak, A., 1977, (ed.) “Inversion Methods in Atmospheric Remote Sensing”, Academic Press.Google Scholar
Dunham, E., Elliot, J.L., Gierasch, P.J., 1980, Astrophys. J. 235, 274.Google Scholar
Fazio, G.G., Traub, W.A., Wright, E.L., Low, F.J., Trafton, L.M., 1976, Astrophys. J. 209, 633.CrossRefGoogle Scholar
Flasar, F.M., Conrath, B.J., Pirraglia, J.A., Clark, P.C., French, R.G., Gierasch, P.J., 1980, J. Geophys. Res. (in press).Google Scholar
Gautier, D., Lacombe, A., Revah, I., 1977a, J. Atmos. Sci., 34, 1130 Google Scholar
Gautier, D., Lacombe, A., Revah, I., 1977b, Astron. Astrophys. 61, 149.Google Scholar
Gautier, D., Marten, A., Baluteau, J.P., Lacombe, A., 1979 Icarus 37, 214.Google Scholar
Gautier, D., Courtin, R., 1979, Icarus 39, 28.Google Scholar
Gautier, D., Conrath, B., Flasar, M., Hanel, R., Kunde, J., Chedin, A., Scott, N., 1980, J. Geophys. Res. (in press).Google Scholar
Gillett, F.C., Rieke, G.H., 1977, Astrophys. J. 218, L141.Google Scholar
Gillett, F.C., 1979, unpublished communication.Google Scholar
Gulkis, S., Janssen, M.A., Olsen, E.T., 1978, Icarus 34, 10.Google Scholar
Gulkis, S., Olsen, E.T., 1980, unpublished communication.Google Scholar
Hanel, R., Conrath, B., Flasar, M., Kunde, V., Lowman, P., Maguire, W., Pearl, J., Pirraglia, J., Samuelson, R., Gautier, D., Gierasch, P., Kumar, S., Ponnamperuma, C., 1979, Science 204, 972.Google Scholar
Hildebrand, R.H., Keene, J., Whitcomb, S.E., 1980 (in preparation).Google Scholar
Hogan, J., Rasool, I., Encrenaz, T., 1969, J. Atmos. Sci. 26, 898.Google Scholar
Klein, M.J., Janssen, M.A., Gulkis, S., Olsen, E.T., 1978, In “The Saturn System”, NASA Conference Publication CP-2089, p. 195.Google Scholar
Kliore, A.J., Patel, I.R., Lindal, G.F., Waite, J.H., Mcdonough, T.R., 1980, J. Geophys. Res. (in press).Google Scholar
Kostenko, V.J., Pavlov, A.V., Scholomitsky, G.B., Slysh, V.I., Soglasnova, V.A., Zabolotny, V.F., 1971, Astrophys. Lett. 8, 41.Google Scholar
Lindal, G.F., Wood, G.E., Levy, G.S., Anderson, J.D., Sweetnam, D.N., Hotz, H.B. Buckles, B.J., Holmes, D.P., Doms, P.E., Eshleman, V.R., Tyler, G.L., Croft, T.A., 1980, J. Geophys. Res. (in press).Google Scholar
Loewenstein, R.F., Harper, D.A., Moseley, S.H., Telesco, C.M., Thronson, H.A., Hildebrand, R.H., Whitcomb, S.E., Winston, R., Stiening, R.F., 1977a, Icarus 31, 315.Google Scholar
Loewenstein, R.F., Harper, D.A., Moseley, H., 1977b, Astrophys. J. 218, L145.Google Scholar
Low, F.J., Rieke, G.H., Armstrong, K.R., 1973, Astrophys. J. 183, L105.Google Scholar
Macy, W., Sinton, W.M., 1977, Astrophys. J. 218, L79.CrossRefGoogle Scholar
Morrison, D., Cruikshank, D.P., 1973, Astrophys. J. 179, 329.Google Scholar
Ohring, G., 1973, Astrophys. J. 184, 1027.Google Scholar
Ohring, G., 1975, Astrophys. J. 195, 223.CrossRefGoogle Scholar
Orton, G.S., 1975a, Icarus 26, 125.Google Scholar
Orton, G.S., 1975b, Icarus 26, 142.Google Scholar
Orton, G.S., Ingersoll, A.P., 1976, In “Jupiter”, Gehrels, T. ed., U. of Arizona Press, p. 206.Google Scholar
Orton, G.S., 1977, Icarus 32, 41.Google Scholar
Orton, G.S., Robiette, A.G., 1980, J. Quant. Spectrosc. Rad. Transf. (in press).Google Scholar
Orton, G.S., Ingersoll, A.P., 1980, J. Geophys. Res. (in press).Google Scholar
Rieke, G.H., Low, F.J., 1974, Astrophys. J. 193, L147.Google Scholar
Rowan-Robinson, M., Ade, P.A.R., Robson, E.I., Clegg, P.E., 1978, Astron. Astrophys. 62, 249.Google Scholar
Sinton, W.M., Macy, W.W., Orton, G.S., 1980 Icarus 42, 86.Google Scholar
Stier, M.T., Traub, W.A., Fazio, G.G., Wright, E.L., Low, F.J., 1978, Astrophys. J. 226, 347.Google Scholar
Strobel, D.F., 1975, Rev. Geophys. Space Phys. 13, 372.Google Scholar
Tokunaga, A., Cess, R.D., 1977, Icarus 32, 321.Google Scholar
Tokunaga, A.T., Caldwell, J., Gillett, F.C., Nolt, I.G., 1978, Icarus 36, 216.Google Scholar
Trafton, L.M., 1967, Astrophys. J. 147, 765.Google Scholar
Trafton, L.M., Stone, P.H., 1974, Astrophys. J. 188, 649.Google Scholar
Ulich, B.L., 1974, Icarus 21, 254.Google Scholar
Ulich, B.L., Conklin, E.K., 1976, Icarus 27, 183.CrossRefGoogle Scholar
Wallace, L., Prather, M., Belton, M.J.S., 1974, Astrophys. J. 193, 481.Google Scholar
Wallace, L., 1975, Icarus 25, 538.Google Scholar
Wallace, L., Smith, G.R., 1976, Astrophys. J. 203, 760.Google Scholar
Werner, M.W., Neugebauer, G., Houck, J.R., Hauser, M.G., 1978, Icarus 35, 289.Google Scholar
Whitcomb, S.E., Hildebrand, R.H., Keene, J., Stiening, R.F., Harper, D.A., 1979, Icarus 38, 75.Google Scholar