Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-08T14:31:52.889Z Has data issue: false hasContentIssue false

Astrophysical Problems Involving Carbon Re-appraised

Published online by Cambridge University Press:  07 August 2017

J P Hare
Affiliation:
School of Chemistry and Molecular Sciences University of Sussex, Brighton, BN1 9QJ UK
H W Kroto
Affiliation:
School of Chemistry and Molecular Sciences University of Sussex, Brighton, BN1 9QJ UK

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The molecule C60, Buckminsterfullerene, was discovered1-3 during laboratory experiments motivated by problems associated with processes involving carbon in stars and space4,5. Astronomical puzzles also lay behind the experiments which led to the molecule's extraction and structure confirmation6-8. Although the resulting breakthrough has opened up exciting new avenues of chemistry, physics and materials science here on earth9 the original astrophysical questions still remain and are even more tantalising now than they were before. Some of the puzzles are here re-addressed in the light of the new understanding which the fullerene discovery has brought. Indeed we shall look at the questions through magenta coloured spectacles and note that there are new and even more intriguing parallels between the behaviour of carbon on earth and space. The article contains a brief account of the processes responsible for the synthesis of carbon in stars and its dissemination throughout the Galaxy as this information is deemed necessary to gain an intrinsic understanding of the amazing role carbon plays in nature.

Type
Basic Studies
Copyright
Copyright © Kluwer 1992 

References

REFERENCES

1. Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.,; Smalley, R. E., Nature (London) 1985, 318, 162163.Google Scholar
2. Kroto, H. W. Science 1988, 242, 11391145.Google Scholar
3. Curl, R. F. and Smalley, R. E. Science 1988, 242, 10171022.Google Scholar
4. Heath, J. R.; Zhang, Q.; O'Brien, S. C.; Curl, R. F.; Kroto, H. W.; Smalley, R. E. J. Am. Chem. Soc. 1987, 109, 359363.CrossRefGoogle Scholar
5. Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Astrophys. J. 1987, 314, 352355.CrossRefGoogle Scholar
6. Kraetschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature (London). 1990, 347, 354358.Google Scholar
7. Taylor, R.; Hare, J. P.; Abdul-Sada, A. K.; Kroto, H. W. J. Chem. Soc. Chem. Commun. 1990, 14231425.Google Scholar
8. Kroto, H. W., Angewandte Chemie 1990, in press Google Scholar
9. Kroto, H. W., Allaf, A. W.; Balm, S. P., Chem. Revs. 1991, 91, 1213 Google Scholar
10. Kroto, H. W. Polycyclic Aromatic Hyrocarbons and Astrophysics , Leger, A.; d'Hendecourt, L. B. eds.; Reidel: Dordrecht, 1987, pp. 197206.Google Scholar
11. Kroto, H. W. Ann. Phys. Fr. 1989, 14, 169179.Google Scholar
12. Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Kroto, H. W.; Smalley, R.E. Comments. Condens. Matter Phys. 1987, 13, 119141 Google Scholar
13. Taylor, R.; Parsons, J. P.; Avent, A. G.; Rannard, S. P.; Dennis, T. J.; Hare, J. P.; Kroto, H. W.; Walton, D. R. M., Nature 1991, 351, 277.Google Scholar
14. Kroto, H. W.; Jura, M.; in press.Google Scholar
15. Herbig, G. H. Astrophys. J. 1975, 196, 129160.Google Scholar
16. Herbig, G. H. Astrophys. J. 1988, 331, 9991003.Google Scholar
17. Sarre, P. J. Nature , 1991, 351, 356.Google Scholar
18. Fossey, S. J. Nature , 1991, 353, 393.Google Scholar
19. Cohen, M. et al., Astrophys. J. 1975, 197, 179.Google Scholar
20. Duley, W. W., Mon. Not. R. astr. Soc. 1985, 215, 259263.Google Scholar
21. Leger, A.; d'Hendecourt, L.; Verstraete, L.; Schmidt, W. Astron. Astrophys. 1988, 203, 145148.Google Scholar
22. Heath, J. R.; O'Brien, S. C.; Zhang, Q.; Liu, Y.; Curl, R. F.; Kroto, H. W.; Smalley, R. E. J. Am. Chem. Soc. 1985, 107, 77797780.CrossRefGoogle Scholar
23. Ballester, J. L.; Antoniewicz, P. R.; Smoluchowski, R. Astrophys. J. 1990, 356, 507512.Google Scholar
24. Cioslowski, J.; Fleischmann, E. D., J. Chem. Phys. 1991, 94, 3730.Google Scholar
25. Chang, A. H. H.; Ermler, W. C.; Pitzer, R. M., J. Chem. Phys. 1991, 94, 5004.Google Scholar
26. Wastberg, B.; Rosen, A., Physica Scripta. 1991, 44, 276288.Google Scholar
27. Huang, Y.; Freiser, B. S., Nature 1991,Google Scholar
28. Savage, B. D.; Mathis, J. S., Ann. Rev. Astrophys. 1979, 17, 73111.Google Scholar
29. Stecher, T. P.; Donn, B., Astrophys. J. 1965, 142, 1683.Google Scholar
30. Fitzpatrick, E. L.; Massa, D., Astrophys. J. 1986, 307, 286.Google Scholar
31. Day, K. L.; Huffman, D. R., Nature Physical Science , 1973, 243, 5051.CrossRefGoogle Scholar
32. Holm, A. V.; Wu, C.; Doherty, L. R., Astro. Soc. Pac. 1982, 94, 548552.Google Scholar
33. Duley, W. W.; Williams, D. A. Mon. Not. R. Astron. Soc. 1988, 231, 969975.Google Scholar
34. Leger, A.; Puget, L. J. Astron. Astrophys. 1984, 137, L5L8.Google Scholar
35. Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R. Astrophys. J. 1985, 290, L25L28.Google Scholar
36. Balm, S.P.; Kroto, H. W. Mon. Not. R. Astron. Soc. , 1990, 245, 193197.CrossRefGoogle Scholar
37. Gerhardt, P.; Homann, K. H. J. Phys. Chem. 1990, 94, 53815391.Google Scholar
38. Howard, J. B.; McKinnon, J. T.; Makarovsky, Y.; Lafleur, A. L.; Johnson, M. E., Nature 1991, 352, 139141.Google Scholar
39. Harris, S. J.; Weiner, A. M., Ann. Rev. Phys. Chem. 1985, 36, 3152.Google Scholar
40. McCrea, W. H.; McNally, D., Mon. Not. Roy. Astronom. Soc. 1960, 121, 238.Google Scholar
41. Ney, E. P., Sky and Telescope 1975, Jan , 21.Google Scholar
42. Nquyen-Q-Rieu; Winnberg, A.; Bujarrabal, V., Astron. Astrophysics. 1986, 165, 204210.Google Scholar
43. Herbst, E.; Klemperer, W. Astrophys. J. 1973, 185, 505533.Google Scholar
44. Dalgarno, A.; Black, J. H. Rep. Prog. Phys. 1976, 39, 573612.CrossRefGoogle Scholar
45. Jura, M.; Kroto, H. W., Astrophys. J. 1990, 351, 222229.Google Scholar
46. Iijima, S., Nature 1991, 354, 57.Google Scholar
47. Endo, M., personal communication.Google Scholar
48. Iijima, S. J. Cryst. Growth , 1980, 5, 675683.Google Scholar
49. Kroto, H. W.; McKay, K. G., Nature (London) , 1988, 331, 328331.Google Scholar
50. Endo, M. and Kroto, H. W., to be published.Google Scholar
51. Sellgren, K., Astrophys. J. 1984, 277, 623633.Google Scholar
52. Wright, E. L. Nature (London) 1988, 336, 227228 Google Scholar
53. Kroto, H. W., Iijima, S., to be published Google Scholar
54. Lewis, R. S.; Ming, T.; Wacker, J. F.; Anders, E.; Steel, E., Nature 1987, 326, 160.CrossRefGoogle Scholar
55. McKay, K. G.; Dunne, L. J.; Kroto, H. W.; in preparation.Google Scholar
56. Clayton, D. D. Nature (London) 1975, 257, 3637.Google Scholar
57. Weiske, T.; Bohme, D. K.; Hrusak, J; Kratschmer, W; Schwarz, , Angew. Chem. Int. Ed. Engl. 1991, 30, 884.Google Scholar
58. Heymann, D. J. Geophys. Res. B 1986, 91, E135138.Google Scholar
59. Rubin, Y.; Kahr, M.; Knobler, C. B.; Diederich, F.; Wilkins, C. L., J. Am. Chem. Soc. 1991, 113, 495500.Google Scholar
60. Kroto, H. W.; Walton, D. R. M.; Post-Fullerene Organic Chemistry in Chemistry of Three-Dimensional Polycyclic Molecules , Editors; Osawa, E. and Yonemitsu, O., VCH International: New York.Google Scholar