Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T03:23:53.237Z Has data issue: false hasContentIssue false

An observation of jupiter in the Ultraviolet

Published online by Cambridge University Press:  14 August 2015

Theodore P. Stecher*
Affiliation:
Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, Maryland, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A single photoelectric spectral scan of Jupiter in the ultraviolet is presented in the form of a geometric reflectivity. The reflectivity is then assumed to be due to Rayleigh scattering by molecular hydrogen. An upper limit to the amount of molecular hydrogen above the cloud layer of a 11 km atm. is derived.

On a obtenu un spectre ultraviolet de Jupiter (1700-4000 Å, résolution 55 Å) au moyen d'un dispositif photoélectrique. Cet unique document est présenté camme une réflectivité géométrique, laquelle est ensuite supposée due à la diffusion Rayleigh par l'hydrogène moléculaire. On en déduit une limite supérieure de la quantité d'hydrogène moléculaire présente au-dessus de la couche de nuages d'une atmosphère de 11 km atm.

Резюме

Резюме

Получен ультрафиолетовый спектр Юпитера (1700-4000 Å, разрешение 55 Å) при посредстве фотоэлектрического устройства. Этот единственный в своем роде документ представлен как геометрическая рефлексивность, которая, затем, предположена являющейся следствием релеевского рассеяния молекулярным водородом. Из этого выведен верхний предел количества молекулярного водорода находящегося над слоем облаков атмосферы в 11 км атм.

Type
Session IV. Far Ultra-Violet Radiation : Stars and Galaxies
Copyright
Copyright © CNRS 1965 

References

Coulson, K. L., Dave, J. V. and Sekera, Z., 1960, Tables Belated to Radiation Emerging from a Planetary Atmosphere with Rayleigh Scattering (Berkeley and Los Angeles, University of California Press).Google Scholar
Dalgarno, A. and Williams, D. A., 1962a, Ap. J., 136, 690.CrossRefGoogle Scholar
Dalgarno, A. and Williams, D. A., 1962b M. N., 124, 313.Google Scholar
Harris, D. L., 1961, Planets and Satellites; The Solar System, ed. Kuiper, H. and Middlehurst, B. (Chicago: University of Chicago Press), 3, 272.Google Scholar
Kuiper, G. P., 1952, The Atmospheres of the Earth and Planets (University of Chicago Press, Chicago), 2nd ed. Google Scholar
Mayers, D. F., 1962, M. N., 123, 471.Google Scholar
Sobuti, Y., 1963, Ap. J., Suppl. 7, No. 72.Google Scholar
Spinrad, H. and Trafton, L. M., 1963, Icarus, 2, 19.CrossRefGoogle Scholar
Stecher, T. P. and Milligan, J. E., 1962, Ap. J., 136, 1.Google Scholar
Tousey, R., 1963, Space Sci. Rev., 2, 3.Google Scholar
Watanabe, K., Selikoff, M. and Inn, E. C. Y., 1953, AFCRC. Tech. Rep., No. 53–23, Geophys. Res. Paper, No. 21.Google Scholar
Younkin, R. L. and Münch, G., 1962, Mem. Soc. Res. Sci. Liege, 24, 125.Google Scholar
Zabriskie, F. R., 1962, Ap. J., 67, 168.Google Scholar