Hostname: page-component-cc8bf7c57-8cnds Total loading time: 0 Render date: 2024-12-12T07:37:21.695Z Has data issue: false hasContentIssue false

An Ab Initio Approach to the Solar Coronal Heating Problem

Published online by Cambridge University Press:  26 May 2016

B.V. Gudiksen
Affiliation:
Inst. for Solar Physics, Albanova University Center, Stockholm Observatory, 10691 Stockholm, Sweden
Â. Nordlund
Affiliation:
Astronomical Observatory, NBIfAFG, Copenhagen University, Øster Voldgade 3, 1350 Copenhagen K, Denmark

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We approach the solar coronal heating problem ab initio. Starting from a potential extrapolation of a SOHO/MDI magnetogram, a FAL—C atmospheric stratification, and a realistic photospheric velocity field, Spitzer conductivity and magnetic dissipation creates a corona where more than 2 106ergs s—1 cm—2 is dissipated. The winding of the magnetic field by the horizontal velocities in the solar photosphere is sufficient to provide a major part of the heating in the solar corona. The heating is intermittent on the smallest scale, but on average follows the magnetic field strength squared, as is expected from a force free magnetic field configuration. The intermittent heating creates large temperature and density fluctuations in the corona. The total dissipated energy in the corona is at least constant if not increasing with magnetic Reynolds number, making this heating process unavoidable as a major contributor to the heating of the solar corona.

Type
Part 9: Heating of Solar and Stellar Coronae
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Aschwanden, M.J., Schrijver, C.J. & Alexander, D. 2001, ApJ, 550, 1036.Google Scholar
Demoulin, P., van Driel-Gesztelyi, L., Mandrini, C., Klimchuck, J. and Harra, L. 2003, ApJ, 586, 592.Google Scholar
Dorch, S.B.F., & Nordlund, Å. 1998, A&A, 338, 329.Google Scholar
Foley, C., Patsourakos, S., Culhane, J. & MacKay, D. 2002, A&A, 381, 1049.Google Scholar
Fontenla, J.M., Avrett, E.H., & Loeser, R. 1993, ApJ, 406, 319.Google Scholar
Galsgaard, K., & Nordlund, Å. 1996, J. Geophys. Res., 101, 13445.CrossRefGoogle Scholar
Gudiksen, B.V., & Nordlund, Å. 2001, ApJ, 333, 10.Google Scholar
Hendrix, D.L., van Hoven, G., Mikic, Z., & Schnack, D.D. 1996, ApJ, 470, 1192.Google Scholar
Mandrini, C., Démoulin, P & Klimchuck, J. 2000, ApJ, 530, 999.Google Scholar
Nordlund, Å., Galsgaard, K., & Stein, R.F. 1994, in NATO ASI Series, 433, Solar Surface Magnetic Fields, ed. Rutten, R.J. & Schrijver, C.J. (Dordrecht: Kluwer).Google Scholar
Parker, E.N. 1979, Cosmical Magnetic Fields (Oxford: Clarendon Press).Google Scholar
Scharmer, G.B., Gudiksen, B.V., Kiselman, D., Löfdahl, M. & van der Voort, L.H.M Rouppe 2002, Nature, 420, 151.CrossRefGoogle Scholar
Schrijver, C.J., Hagenaar, H.J. & Title, A.M. 1997, ApJ, 475, 328.Google Scholar
Schrijver, C.J. et al, 1999, Sol. Physics, 1999, 187, 261.Google Scholar
Schrijver, C.J., & Aschwanden, M. 2002, ApJ, 566, 1147.CrossRefGoogle Scholar
Schmeieder, B., Rust, D., Georgoulis, M. & Bernasconi, P. 2004, in IAU Symp. 219, Stars as Suns, Dupree, A. K. & Benz, A. O., eds., 483.Google Scholar
Spitzer, L. 1956, The Physics of Fully Ionized Gases (New York: Interscience).Google Scholar
Stein, R.F. & Nordlund, Å. 1998, ApJ, 499, 914.Google Scholar