Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T04:00:44.540Z Has data issue: false hasContentIssue false

Acceleration and Dissipation in Relativistic Winds

Published online by Cambridge University Press:  19 July 2016

Jonathan Arons*
Affiliation:
University of California, Berkeley, Department of Astronomy, 601 Campbell Hall, Berkeley, CA 94720-3411, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I argue that ideal MHD relativistic winds are always limited in practice to asymptotic 4-velocity γ ≍ σ1/30 and asymptotic magnetization σ ∼ σ 2/30 ≫ 1, where σ0 is the wind magnetization with respect to the rest energy density, evaluated at the light cylinder of the rotating, magnetized compact object that drives the flow. This suggests that the observed low value of the asymptotic σ in the equatorial sectors of the winds driving pulsar wind nebulae and the associated high values of the asymptotic 4-velocity are a consequence of magnetic dissipation in the wind zone.

Type
Part 4: Pulsar Wind Nebulae and Their Environments
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Arons, J. 1998, Mem. Soc. Ast. It., 69, 989.Google Scholar
Arons, J. 2003, ApJ, 589, 871.CrossRefGoogle Scholar
Arons, J. 2004, Adv. Sp. Res., 33, 466.CrossRefGoogle Scholar
Begelman, M. C., & Li, Z.-Y. 1994, ApJ, 426, 269.CrossRefGoogle Scholar
Beskin, V. S., Kuznetsova, I. V., & Rafikov, R. R. 1998, MNRAS, 299, 341.CrossRefGoogle Scholar
Bogovalov, S. V. 1999, A&A, 349, 1017.Google Scholar
Buckley, R. 1977, Nature, 266, 37.CrossRefGoogle Scholar
Contopoulos, I., Kazanas, D., & Fendt, C. 1999, ApJ, 511, 351.CrossRefGoogle Scholar
Contopoulos, I., & Kazanas, D. 2002, ApJ, 566, 336.CrossRefGoogle Scholar
Gaensler, B. M., Arons, J., Kaspi, V. M., Pivovaroff, M. J., Kawai, N., & Tamura, K. 2002, ApJ, 569, 878.CrossRefGoogle Scholar
Gallant, Y. A., van der Swaluw, E., Kirk, J. G., & Achterberg, A. 2002, in ASP Conf. Ser., Vol. 271, Neutron Stars and Supernova Remnants, eds. Slane, P. O., & Gaensler, B. M., (San Francisco: ASP), p. 99.Google Scholar
Goldreich, P., & Julian, W. H. 1970, ApJ, 160, 971.CrossRefGoogle Scholar
Hester, J. J., et al. 2002, ApJ, 577, L49.CrossRefGoogle Scholar
Kennel, C. F., & Coroniti, F.C. 1984a, 283, 694.Google Scholar
Kennel, C. F., & Coroniti, F.C. 1984b, 283, 710.Google Scholar
Kirk, J. G., & Skjaeraasen, O. 2003, ApJ, 591, 366.CrossRefGoogle Scholar
Lyubarsky, Y. E. 2003, MNRAS, 345, 153.CrossRefGoogle Scholar
Melatos, A. 1998, Mem. Soc. Ast. It., 69, 1009.Google Scholar
Michel, F. C. 1969, ApJ, 158, 727.CrossRefGoogle Scholar
Reynolds, S. P. 2003, in IAU Colloq. 192, Supernovae, (Berlin: Springer), in press (astro-ph/0308483).Google Scholar
Spitkovsky, A., & Arons, J. 2004, ApJ, 603, 669.CrossRefGoogle Scholar