Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T20:36:03.089Z Has data issue: false hasContentIssue false

Abundances in the Galactic Center

Published online by Cambridge University Press:  23 September 2016

Peter G. Wannier*
Affiliation:
Jet Propulsion Laboratory, Pasadena, California

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Abundance measurements in the Galactic Center (GC) probe material with a nucleosynthetic history unique in our Galaxy. The measurements are of two types: probing interstellar and stellar material. Measurements of gas-phase abundances are mostly toward SgrB2 and SgrA. They reflect the current state of nuclear evolution in the GC and include several important isotope abundance ratios. The isotope ratios provide the most accurate information and allow for comparison with results elsewhere in the interstellar medium. The second type of measurement is of abundances in (and around) stars, yielding chemical abundances in the bulge and disc populations, and reflecting the state of nuclear evolution when the stars were born.

When combined with our knowledge of evolution in the solar neighborhood, several of the results are consistent with the the greater nuclear “maturity” of the inner Galaxy. However, there are several important exceptions, which point to the fact that we really do not understand nuclear processing in the GC region. Some of the open issues may be resolved observationally, and with new infrared and millimeterwave techniques a clear opportunity exists to improve the observational record. Results should increase our understanding of stellar nucleosynthesis and of the history of star formation in the GC.

Type
The Large - Scale Interstellar Medium
Copyright
Copyright © Kluwer 1989 

References

Audouze, J., Lequeux, J. and Vigroux, L., 1975, Astron. Astrophys., 43, 71.Google Scholar
Azzopardi, M., Lequeux, J. and Rebeirot, E., 1989 (these proceedings).Google Scholar
Bania, T.M., Rood, R.T. and Wilson, T.L., 1987, Ap.J., 323, 30.Google Scholar
Beiging, J., Downes, D., Wilson, T.L., Martin, A.H.M. and Güsten, R., 1980, Astron. Astrophys. (suppl), 42, 163.Google Scholar
Blitz, L. and Heiles, C., 1987, Ap.J. (letters), 313, L95.Google Scholar
Bujarrabal, V., Cernicharo, J. and Guélin, M., 1983, Astron. Astrophys., 128, 355.Google Scholar
Dearborn, D.S.P., Schramm, D.N. and Steigman, G., 1986, Ap.J., 302, 35.Google Scholar
Epstein, R.I., 1977, Ap.J., 212, 595.Google Scholar
Erickson, E.F., Haas, M.R., Colgan, S.W.J., Simpson, J.P., Morris, M.R. and Rubin, R.H., 1989, (these proceedings).Google Scholar
Frogel, J.A. and Whitford, A.E., 1987, Ap.J. 320, 199.Google Scholar
Fujita, Y. and Tsuji, T., 1976, Proc. Jap. Acad., 52, 296.Google Scholar
Geballe, T.R., Krisciunas, K., Lee, T.J., Gatley, I., Wade, R., Duncan, W.D., Garden, R. and Becklin, E.E., 1984, Ap.J., 284, 118.Google Scholar
Gomez-Gonzalez, J., Guélin, M., Cernicharo, J., Kahane, C. and Bogey, M., 1986, Astron. Astrophys., 168, L11.Google Scholar
Guélin, M., Cernicharo, J. and Linke, R.A., 1982, Ap.J., 263, L89.CrossRefGoogle Scholar
Güsten, R. and Downes, D., 1980, Astron. Astrophys., 87, 6.Google Scholar
Güsten, R. and Ungerechts, H., 1985, Astron. Astrophys., 145, 241.Google Scholar
Heiligman, G.M., 1988 (private communication).Google Scholar
Henkel, C., Wilson, T.L., Walmsley, C.M. and Pauls, T., 1983, Astron. Astrophys., 127, 388.Google Scholar
Iben, I. Jr. and Truran, J.W., 1978, Ap.J., 220, 980.Google Scholar
Kuiper, T.B.H., Peters, W.L., Gardner, F.F., Whiteoak, J.B. and Reynolds, J.E., 1988, (submitted to Ap.J.).Google Scholar
Kutner, M.L., Machnik, D.E., Tucker, K.D. and Massano, W., 1980, Ap.J., 254, 538.CrossRefGoogle Scholar
Lambert, D.L., 1976, Mem. Soc. Roy. Sci. Liege, 9, 405.Google Scholar
Langer, W.D., Graedel, T.E., Frerking, M.A. and Armentrout, P.B., 1984, Ap.J., 277, 581.Google Scholar
Linke, R.A., 1980, (unpublished. See reported values in Wannier, 1980).Google Scholar
Lis, D.C. and Goldsmith, P.F. 1989, (these proceedings) Google Scholar
Pauls, T. and Mezger, P.G., 1980, Astron. Astrophys, 85, 26.Google Scholar
Peimbert, M., 1979, in “The Large Scale Characteristics of the Galaxy”, Burton, W.B., ed., Dordrecht: Reidel.Google Scholar
Penzias, A.A., 1979, Ap.J., 228, 430.Google Scholar
Penzias, A.A., 1981, Ap.J., 249, 518.Google Scholar
Pitault, A. and Cesarsky, D.A., 1980, Astron. Astrophys, 82, 203.Google Scholar
Pottasch, S.R. and Dennefield, M., 1985, in “Production and Distribution of C, N, O Elements”, Danziger, I.J., Matteucci, F. and Kjar, K., eds, ESO workshop Proceedings No. 21, ESO.Google Scholar
Rich, M., 1986, “Abundances and kinematics of K giants in the galactic nuclear bulge”, PhD thesis, California Institute of Technology.Google Scholar
Rood, R.T., Steigman, G. and Tinsley, B.M., 1976, Ap.J. (Letters), 207, L57.CrossRefGoogle Scholar
Scalo, J.M., 1977, Ap.J., 215, 194.CrossRefGoogle Scholar
Stark, A.A., 1981, Ap.J., 245, 99.CrossRefGoogle Scholar
Taylor, D.K. and Dickman, R.L., 1986, B.A.A.S., 18, 1026.Google Scholar
Vidal-Madjar, A., Ferlie, R., Gry, C. and Lallement, R., 1986, Astron. Astrophys., 155, 407.Google Scholar
Wannier, P.G., 1980, Ann. Rev. Astron. Astrophys., 18, 399.Google Scholar
Wannier, P.G., Lucas, R., Linke, R.A., Encrenaz, P.J., Penzias, A.A. and Wilson, R.W., 1976, Ap.J. (letters), 205, L169.Google Scholar
Wannier, P.G., Linke, R.A. and Penzias, A.A., 1981, Ap.J. 247, 522.CrossRefGoogle Scholar
Wannier, P.G. and Sahai, R.S., 1987, Ap.J. 319, 367.Google Scholar
Wannier, P.G., 1985, in “Production and Distribution of C, N, O Elements”, Danziger, J., ed., ESO.Google Scholar
Whitford, A.E. and Rich, R.M., 1983, Ap.J. 274, 723.CrossRefGoogle Scholar