Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T06:32:21.325Z Has data issue: false hasContentIssue false

Thermal Sensitivity and Cardiovascular Reactivity to Stress in Healthy Males

Published online by Cambridge University Press:  10 January 2013

Pablo Antonio Conde-Guzón*
Affiliation:
Universidad de León (Spain)
María Teresa Bartolomé-Albistegui
Affiliation:
Hospital Nuestra Señora de Regla (Spain)
Pilar Quirós
Affiliation:
Universidad Nacional de Educación a Distancia (Spain)
Raúl Cabestrero
Affiliation:
Universidad Nacional de Educación a Distancia (Spain)
*
Correspondence concerning this article should be addressed to Pablo Antonio Conde-Guzón. Área de Personalidad, Evaluación y Tratamiento Psicológicos. Departamento de Psicología, Sociología y Filosofía. Universidad de León. Campus de Vegazana s/n. 24071 León (Spain). Phone: +34-987782136. E-mail: [email protected]

Abstract

This paper examines the association of cardiovascular reactivity with thermal thresholds (detection and unpleasantness). Heart period (HP), systolic (SBP) and diastolic (DBP) blood pressure of 42 health young males were recorded during a cardiovascular reactivity task (a videogame based upon Sidman's avoidance paradigm). Thermal sensitivity, assessing detection and unpleasantness thresholds with radiant heat in the forearm was also estimated for participants. Participants with differential scores in the cardiovascular variables from base line to task ≥ P65 were considered as reactors and those how have differential scores ≤ P35 were considered as non-reactors. Significant differences were observed between groups in the unpleasantness thresholds in blood pressure (BP) but not in HP. Reactors exhibited significant higher unpleasantness thresholds than non-reactors. No significant differences were obtained in detection thresholds between groups.

Este estudio investiga la relación entre la reactividad cardiovascular y la sensibilidad térmica (umbrales de detección y molestia). 42 varones jóvenes y sanos participaron en un experimento en el que se registraron el periodo cardiaco, la presión arterial sistólica y la presión arterial diastólica durante la realización de una tarea evocadora de reactividad cardiovascular (videojuego basado en el paradigma de evitación de Sidman). La sensibilidad térmica fue medida en todos los participantes mediante la estimación de los umbrales de detección y molestia en la piel del antebrazo con el método de calor radiante. Los participantes que presentaron valores diferenciales en las variables cardiovasculares respecto a la línea base ≥ P65 fueron considerados como reactores, mientras que los que obtuvieron valores diferenciales ≤ P35 se consideraron como no-reactores.

Se encontraron diferencias significativas en los umbrales de molestia entre los grupos de reactores y no-reactores en presión arterial, aunque no se encontraron diferencias en la reactividad del periodo cardiaco. El grupo de reactores presenta umbrales más elevados en la molestia que el grupo de no-reactores. No se encontraron diferencias en los umbrales de detección entre los grupos.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Billert, H., Gaca, M., & Adamski, D. (2007). Smoking cigarettes and pain-implications for the postoperative period. Przegl Lek, 64, 882885.Google ScholarPubMed
Bruehl, S., & Chung, O. Y. (2006). Parental history of chronic pain may be associated with impairments in endogenous opioid analgesic systems. Pain, 124, 287294. doi:10.1016/j.pain.2006.04.018CrossRefGoogle ScholarPubMed
Burns, J. W., Bruehl, S., & Caceres, C. (2004). Anger management style, blood pressure reactivity, and acute pain sensitivity: evidence for “Trait x Situation” models. Annals of Behavioral Medicine, 27, 195204. doi:10.1207/s15324796abm2703_7CrossRefGoogle ScholarPubMed
Caceres, C., & Burns, J. W. (1997). Cardiovascular reactivity to psychological stress may enhance subsequent pain sensitivity. Pain, 69, 237244. doi:10.1016/S0304-3959(96)03289-7CrossRefGoogle ScholarPubMed
Campbell, T. S., Holder, M. D., & France, C. R. (2006). The effects of experimenter status and cardiovascular reactivity on pain reports. Pain, 125, 264269. doi:10.1016/j.pain.2006.06.002CrossRefGoogle ScholarPubMed
Conde-Guzón, P. A., Bartolomé-Albistegui, M. T., Quirós-Expósito, P., & Schlosky, Grzib. (2003). Hipertensión, reactividad cardiovascular ante el estrés y sensibilidad al dolor [Hypertension, cardiovascular reactivity to stress, and pain sensibility]. Revista de Neurología, 37(6), 586595.CrossRefGoogle Scholar
Conde-Guzón, P. A., Bartolomé-Albistegui, M. T., Quirós, P., Grzib, G., Cabestrero, R., & Crespo, A. (2005). Assessing pain thresholds by applying radiant heat to the skin. Psychologica, 40, 213230.Google Scholar
Curio, I. (1990). Reliability of thermal pain thresholds. Psychologische Beiträge 32, 1622.Google Scholar
Duschek, S., Schwarzkopf, W., & Schandry, R. (2008). Increased pain sensitivity in low blood pressure. Journal of Psychophysiology, 22(1), 2027. doi:10.1027/02698803.22.1.20CrossRefGoogle Scholar
Edwards, L., Ring, C., France, C. R., al'Absi, M., McIntyre, D., Carroll, D., & Martin, U. (2007). Nociceptive flexion reflex thresholds and pain during rest and computer game play in patients with hypertension and individuals at risk for hypertension. Biological Psychology, 76, 7282. doi:10.1016/j.biopsycho.2007.06.005CrossRefGoogle ScholarPubMed
France, C. R., & Stewart, K. (1995). Parental history of hypertension and enhanced cardiovascular reactivity are associated with decreased pain ratings. Psychophysiology, 32, 571578. doi:10.1037/0278-6133.17.3.249CrossRefGoogle ScholarPubMed
France, C. R., & Ditto, B. (1996). Risk for high blood pressure and decreased pain perception. Current Directions in Psychological Science, 5, 120125. doi:10.1111/1467 -8721.ep11452781CrossRefGoogle Scholar
France, C. R., Froese, S. A., & Stewart, J. C. (2002). Altered central nervous system processing of noxious stimuli contributes to decreased nociceptive responding in individuals at risk for hypertension. Pain, 98, 101108. doi:10.1016/S0304 -3959(01)00477-8CrossRefGoogle ScholarPubMed
Gerin, W., Pickering, T. G., Glynn, L., Christenfeld, N., Schwartz, A., Carroll, D., & Davidson, K. (2000). An historic context for behavioral models of hypertension. Journal of Psychosomatic Research, 48(4), 369377. doi:10.1016/S0022-3999(99)00095-1CrossRefGoogle ScholarPubMed
Ghione, S., Rosa, C., Mezzasalma, L., & Panattoni, E. (1988). Arterial hypertension is associated with hypalgesia in humans. Hypertension, 12(5), 491497.CrossRefGoogle ScholarPubMed
Girdler, S. S., Maixner, W., Naftel, H. A., Stewart, P. W., Moretz, R. L., & Light, K. C. (2005). Cigarette smoking, stress-induced analgesia and pain perception in men and women. Pain, 114(3), 372385. doi:10.1016/j.pain.2004.12.035CrossRefGoogle ScholarPubMed
Hardy, J. D., Goodell, H., & Wolff, H. G. (1952). Pain sensations and reactions. Baltimore, MD: Williams and WilkinsGoogle Scholar
Lee, J. H., & Stitzer, M. L. (1995). A novel radiant heat test for assessing pain threshold in human subjects. Measurement stability. Behavior Research Methods, Instruments & Computers, 27, 4145.CrossRefGoogle Scholar
Light, K. C., Dolan, C. A., Davis, M. R., & Sherwood, A. (1992). Cardiovascular responses to an active coping challenge as predictors of blood pressure patters 10 to 15 years later. Psychosomatic Medicine, 54, 217230.CrossRefGoogle Scholar
McCubbin, J. A. (1991). Diminished opioid inhibition of blood pressure and pituitary function in hypertension development. In McCubbin, J. A., Kaufmann, P. G., & Nemeroff, C. B. (Eds.), Stress, Neuropeptides, and Systemic disease (pp. 445466). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Menkes, M. S., Matthews, K. A., Krantz, D. S., Lundberg, W., Mead, L. A., Qaqish, B.,… Pearson, T. A. (1989). Cardiovascular reactivity to the cold pressor test as predictor of hypertension. Hypertension, 14, 524530.CrossRefGoogle Scholar
Moseley, J. V., & Linden, W. (2006). Predicting blood pressure and heart rate change with cardiovascular reactivity and recovery: results from 3-year and 10-year follow up. Psychosomatic Medicine, 68, 833843. doi:10.1097/01.psy.0000238453.11324.d5CrossRefGoogle Scholar
Myers, C. D., Robinson, M. E., Riley, J. L. III, & Sheffield, D. (2001). Sex, gender, and blood pressure: Contributions to experimental pain report. Psychosomatic Medicine, 63(4), 545550.CrossRefGoogle ScholarPubMed
Nyklícek, I., Vingerhoets, A. J. J. M., & Van Heck, G. L. (1999). Hypertension and pain sensitivity: Effects of gender and cardiovascular reactivity. Biological Psychology, 50(2), 127142. doi:10.1016/S0301-0511(99)00006-XCrossRefGoogle ScholarPubMed
Obrist, P.A. (1981). Cardiovascular psychophysiology: A perspective. New York, NY: Plenum.CrossRefGoogle Scholar
Parker, F., Croft, J., Cresanta, J., Freedman, D., Burke, G., Webber, L., & Berenson, G. (1987). The association between cardivascular response tasks and future blood pressure levels in children: Bogalusa Heart Studi. American Heart Journal, 113, 11741179. doi:10.1016/0002-8703(87)90931-8CrossRefGoogle Scholar
Pertovaara, A., Kauppila, T., & Hämäläinen, M. (1996). Influence of skin temperature on heat pain threshold in humans. Experimental Brain Research, 107(3), 497503. doi:10.1007/BF00230429CrossRefGoogle ScholarPubMed
Shaw, D., & al'Absi, M. (2010). Blunted opiate modulation of prolactin response in smoking men and women. Pharmacology, Biochemistry and Behavior, 95, 15. doi:10.1016/j.pbb.2009.11.016CrossRefGoogle ScholarPubMed
Sidman, M. (1953). Avoidance conditioning with brief shock and no exteroceptive warning signal. Science, 118, 157158.doi:10.1126/science.118.3058.157CrossRefGoogle ScholarPubMed
Steptoe, A., & Cropley, M. (2000). Persistent high job demands and reactivity to mental predict future ambulatory blood pressure. Journal of Hypertension, 18, 581586. doi:10.1097/00004872-200018050-00011CrossRefGoogle ScholarPubMed
Stewart, J. C., Janicki, D. L., & Kamarck, T. W. (2006). Cardiovascular reactivity to and recovery from psychological challenge as predictors of 3-year change in blood pressure. Health Psychology, 25, 111118. doi:10.1037/0278 -6133.25.1.111CrossRefGoogle ScholarPubMed
Treiber, F. A., Kamarck, T., Schneiderman, N., Sheffield, D., Kapuku, G., & Taylor, T. (2003). Cardiovascular reactivity and development of preclinical and clinical disease states. Psychosomatic Medicine, 65(1), 4662.CrossRefGoogle ScholarPubMed
Yarnitsky, D., & Ochoa, J. L. (1990). Studies of heat pain sensation in man: perception thresholds, rate of stimulus rise and reaction time. Pain, 40(1), 8591. doi:10.1016/0304 -3959(90) 91055-NCrossRefGoogle ScholarPubMed
Zamir, N., & Segal, M. (1979). Hypertension-induced analgesia: Changes in pain sensitivity in experimental hypertensive rats. Brain Research, 160(1), 170173. doi:10.1016/0006 -8993(79)90614-0CrossRefGoogle ScholarPubMed