Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T11:10:28.413Z Has data issue: false hasContentIssue false

Self-Starvation in the Rat: Running versus Eating

Published online by Cambridge University Press:  10 April 2014

Robert A. Boakes*
Affiliation:
University of Sydney, Australia
*
Correspondence concerning this article should be addressed to Robert A. Boakes, School of Psychology (A18), University of Sydney, NSW 2006, Australia. Phone: 612 - 9351 3347. FAX: 612 - 9351 2603. E-mail: [email protected]

Abstract

Rats given the combination of unrestricted access to an activity wheel and restricted access to food can lose weight to the extent that they will die unless removed from these conditions. Although this has been known for forty years, why this happens has remained unclear. The phenomenon is paradoxical in that one might expect such rats to eat more as their weight decreases, but in fact they eat less than resting controls. This lecture first examines some of the factors than influence whether self-starvation will occur, such as age, time of food access, type of food and ambient temperature. It then compares competing explanations such as circadian adaptation, thermo-regulation and food aversion learning. As so often in psychology, it turns out that self-starvation results from a combination of many separate factors. The general implications of this research are examined, including whether it provides a useful animal model for human anorexia nervosa.

Las ratas sometidas simultáneamente a restricción de comida y acceso a una rueda de actividad pierden peso hasta el extremo de morir si no son retiradas a tiempo de estas condiciones. Aunque este hecho es conocido desde hace cuarenta años, la razón por la cual esto sucede permanece sin resolver. Lo paradójico de este fenómeno reside en que, aunque sería esperable que las ratas comiesen más a medida que su peso disminuye, en realidad estos animales comen menos que sus controles sedentarios. En esta conferencia se examina, en primer lugar, algunos factores que influyen en el desarrollo de la auto-inanición como son la edad, el tiempo de acceso a la comida, el tipo de comida y la temperatura ambiental. A continuación se comparan algunas explicaciones tales como la adaptación del ritmo circadiano, la termorregulación y la aversión adquirida a la comida. Tal como ocurre con frecuencia en psicología, la auto-inanición es el resultado de diferentes factores. Finalmente, se examinarán algunas implicaciones más generales de esta investigación, incluida su posible utilidad como modelo animal para el estudio de la anorexia nerviosa en humanos.

Type
Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baysari, M. T., & Boakes, R.A. (2004). Flavour aversion produced by running and attenuated by prior exposure to wheels. Quarterly Journal of Experimental Psychology, 57B, 273286.CrossRefGoogle Scholar
Birmingham, C.L., Gutiérrez, E., Jonat, L., & Beumont, P. (2004). Randomized controlled trial of warming in anorexia nervosa. International Journal of Eating Disorders, 35, 234238CrossRefGoogle ScholarPubMed
Boakes, R.A. (1997). Wheels, clocks and anorexia in the rat. In Bouton, M.E. & Fanselow, M.S. (Eds.), Learning, motivation and cognition: The functional behaviorism of R.C. Bolles (pp. 163176). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Boakes, R.A., & Juraskova, I. (2001). The role of drinking in the suppression of food intake by recent activity. Behavioral Neuroscience, 115, 718730.CrossRefGoogle ScholarPubMed
Boakes, R.A., Mills, K.J., & Single, J. P. (1999). Sex differences in the relationship between activity and weight loss in the rat. Behavioral Neuroscience, 113, 10801089.CrossRefGoogle ScholarPubMed
Boakes, R.A., & Nakajima, S. (in press). Conditioned taste aversions based on running or swimming. In Reilly, S. & Schachtman, T.R. (Eds.), Conditioned taste aversion: Behavioral and neural processes. New York: Oxford University Press.Google Scholar
Bolles, R.C. (1967). Theory of motivation. New York: Harper & Row.Google Scholar
Bolles, R.C. (1970). Species-specific defense reactions and avoidance behavior. Psychological Review, 77, 3248.CrossRefGoogle Scholar
Bolles, R.C., & de Lorge, J. (1962). The rat's adjustment to a-diurnal feeding cycles. Journal of Comparative and Physiological Psychology, 55, 760762.CrossRefGoogle ScholarPubMed
Campbell, B.A., & Lynch, G.S. (1968). Influence of hunger and thirst on the relationship between spontaneous activity and body temperature. Journal of Comparative and Physiological Psychology, 65, 492498.CrossRefGoogle ScholarPubMed
Carrera, O., Gutiérrez, E., & Boakes, R.A. (2006). Early handling reduces vulnerability of rats to activity-based anorexia. Developmental Psychobiology, 48, 520527.CrossRefGoogle ScholarPubMed
Collier, G. (1969). Body weight loss as a measure of motivation in hunger and thirst. Annals of the New York Academy of Sciences, 157, 594609CrossRefGoogle Scholar
Dwyer, D.M., & Boakes, R.A. (1997). Activity-based anorexia in rats as a failure to adapt to a feeding schedule. Behavioral Neuroscience, 111, 195205.CrossRefGoogle ScholarPubMed
Epling, W.F., & Pierce, W.D. (1992). Solving the anorexia puzzle: A scientific approach. Toronto, Canada: Hogrefe & Huber.Google Scholar
Epling, W.F., & Pierce, W.D. (1996). Activity anorexia: Theory, research and treatment. Mahwah, NJ: Erlbaum.Google Scholar
Epling, W.F., Pierce, W.D., & Stefan, L.A. (1983). A theory of activity-based anorexia. International Journal of Eating Disorders, 3, 2746.3.0.CO;2-T>CrossRefGoogle Scholar
Gutiérrez, E., Baysari, M.T., Carrera, O., Whitford, T.J., & Boakes, R.A. (2006). High ambient temperature reduces rate of bodyweight loss produced by wheel running. Quarterly Journal of Experimental Psychology, 59, 11961211.CrossRefGoogle ScholarPubMed
Gutiérrez, E., Cerrato, M., Carrera, O., & Vázquez, R. (2007). Heat completely reverses activity-based anorexia: Implications for the treatment of anorexia nervosa. Manuscript submitted for publication.Google Scholar
Gutiérrez, E., Vázquez, R., & Boakes, R.A. (2002). Activity-based anorexia: Ambient temperature has been a neglected factor. Psychonomic Bulletin & Review, 9, 239249.CrossRefGoogle ScholarPubMed
Hall, J.F., & Hanford, P.V. (1954). Activity as a function of a restricted feeding schedule. Journal of Comparative and Physiological Psychology, 47, 362363.CrossRefGoogle ScholarPubMed
Hillebrand, J.J.G., Rijke, C.E. de, Brakkee, J.H., Kas, M.J.H., & Adan, R.A.H. (2005). Vountary access to a warm plate reduces hyperactivity in activity-based anorexia. Physiology & Behavior, 85, 151157.CrossRefGoogle ScholarPubMed
Hughes, S.C., & Boakes, R.A. (in press). Flavor preferences produced by backward pairing with wheel running. Journal of Experimental Psychology: Animal Behavior Processes.Google Scholar
Hull, C.L. (1943). Principles of behavior. New Haven, CT: Yale University Press.Google Scholar
Kanarek, R.B., & Collier, G.H. (1979). Patterns of eating as a function of the cost of a meal. Physiology and Behavior, 23, 141145.CrossRefGoogle Scholar
Lambert, K.G. (1993). The activity-stress paradigm: Possible mechanisms and applications. Journal of General Psychology, 120, 2132.CrossRefGoogle ScholarPubMed
Lattanzio, S.B., & Eikelboom, R. (2003). Wheel access duration in rats: I. Effects on feeding and running. Behavioral Neuroscience, 117, 496504.CrossRefGoogle Scholar
Lett, B.T., & Grant, V.L. (1996). Wheel running induces conditioned taste aversion in rats trained while hungry and thirsty. Physiology & Behavior, 59, 699702.CrossRefGoogle ScholarPubMed
Lett, B.T., Grant, V.L., Byrne, M.J., & Koh, M.T. (2000). Pairings of a distinctive chamber with the after-effect of wheel running produce conditioned place preference. Appetite, 34, 8794.CrossRefGoogle Scholar
Marshall, B.J., & Warren, J.R. (1984). Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet, 1, 13111315.CrossRefGoogle ScholarPubMed
Mistlberger, R. (1994). Circadian food anticipatory activity: Formal models and physiological mechanisms. Neuroscience and Biobehavioral Reviews, 18, 171195.CrossRefGoogle ScholarPubMed
Paré, W.P., & Houser, V.P. (1973). Activity and food restriction effects on gastric lesions in the rat: The activity-stress ulcer. Bulletin of the Psychonomic Society, 2, 213214.CrossRefGoogle Scholar
Richter, C.P. (1922). A behavioristic study of the activity of the rat. Journal of Comparative Psychology Monographs, 1 (No.2).Google Scholar
Routtenberg, A., & Kuznesof, A. W. (1967). Self-starvation of rats living in activity wheels on a restricted feeding schedule. Journal of Comparative and Physiological Psychology, 64, 414421.CrossRefGoogle ScholarPubMed
Sakurada, S., Shido, O., Sugimoto, N., Hiratsuka, Y., Yoda, T., & Kanosue, K. (2000). Autonomic and behavioural thermoregulation in starved rats. Journal of Physiology, 526, 417424.CrossRefGoogle ScholarPubMed
Satvat, E., & Eikelboom, R. (2006). Dissociation of conditioned and unconditioned factors in the running induced feeding suppression. Physiology & Behavior, 89, 428437.CrossRefGoogle ScholarPubMed
Schulkin, J. (2005). Curt Richter: A life in the laboratory. Baltimore, MD: Johns Hopkins University Press.CrossRefGoogle Scholar
Sherwin, C.M. (1998). Voluntary wheel running: A review and novel interpretation. Animal Behaviour, 56, 1127.CrossRefGoogle Scholar
Sparkes, S., Grant, V.L., & Lett, B.T. (2003). Role of conditioned taste aversion in the development of activity anorexia. Appetite, 41, 161165.CrossRefGoogle ScholarPubMed
Spear, N.E., & Hill, W.F. (1962). Methodological note: Excessive weight loss in rats living in activity wheels. Psychological Reports, 11, 437438.CrossRefGoogle Scholar
Woods, D.J., & Routtenberg, A. (1971). Self-starvation in activity wheels: Developmental and chlorpromazine interactions. Journal of Comparative and Physiological Psychology, 76, 8493.CrossRefGoogle ScholarPubMed