Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T11:31:54.033Z Has data issue: false hasContentIssue false

Internal Structure and Clinical Utility of the Anxiety Control Questionnaire-Revised (ACQ-R) Spanish Version

Published online by Cambridge University Press:  03 October 2016

Jorge Osma*
Affiliation:
Universidad de Zaragoza (Spain)
Juan Ramón Barrada
Affiliation:
Universidad de Zaragoza (Spain)
Azucena García-Palacios
Affiliation:
Universitat Jaume I (Spain)
María Navarro-Haro
Affiliation:
Hospital General de Cataluña (Spain)
Alejandra Aguilar
Affiliation:
Universidad de Zaragoza (Spain)
*
*Correspondence concerning this article should be addressed to Jorge Osma. Universidad de Zaragoza – Psicología y Sociología. Teruel (Spain). E-mail: [email protected]

Abstract

Perceived control has shown predictive value for anxiety severity symptoms as well as cognitive-behavior therapy outcomes. The most commonly used measure of perceived control is the Anxiety Control Questionnaire (ACQ), and more recently the ACQ Revised (ACQ-R). However, both questionnaires have shown structural inconsistencies among several studies. Also, although the ACQ and ACQ-R seem to be multidimensional instruments, a single total score have been commonly used. This study examined the internal structure of the ACQ-R Spanish version using exploratory factor and exploratory bi-factor analysis in a sample of 382 college students and 52 people diagnosed of panic disorder (with or without agoraphobia). Also, in this study we assessed the preliminary diagnostic value of the ACQ-R scores. The results indicated that the ACQ-R Spanish version structure consisted of two factors: one related with perceived control of internal emotional reactions (Emotion Control) and another related with perceived control of external events (Threat and Stress Control). Both specific factors can be adequately summarized by a general factor (General Anxiety Perception of Control; CFI = .973, TLI = .954, RMSEA = .039; p = .002), which accounted for 70% of the common explained variance. The correlations between the ACQ-R scores and with variables like anxiety (r = –.66) or anxiety sensitivity (r = –.50) presented the expected pattern of results. Either the two dimensions structure or the total score have proved to be a good tool to distinguish between participants with panic disorder and non-clinical samples (area under the curve = 0.79).

Type
Research Article
Copyright
Copyright © Universidad Complutense de Madrid and Colegio Oficial de Psicólogos de Madrid 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (1994). Diagnostic and statistical manual of mental disorders (4th Ed.). Washington, DC: Author.Google Scholar
Barlow, D. H. (2002). Anxiety and its disorders: The nature and treatment of anxiety and panic (2nd Ed.). New York, NY: Guilford Press.Google Scholar
Barlow, D. H., Sauer-Zavala, S., Carl, J. R., Bullis, J. R., & Ellard, K. K. (2013). The nature, diagnosis, and treatment of neuroticism: Back to the future. Clinical Psychological Science, 2, 344365. http://dx.doi.org/10.1177/2167702613505532 CrossRefGoogle Scholar
Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the Beck Depression Inventory–II. San Antonio, TX: The Psychological Corporation.Google Scholar
Botella, C., & Ballester, R. (1997). Trastorno de pánico, evaluación y tratamiento [Panic disorder, assessment and treatment]. Barcelona, Spain: Martínez Roca.Google Scholar
Brown, T. A., Di Nardo, P. A., & Barlow, D. H. (1994). Anxiety disorder interview schedule for DSM-IV (ADIS-IV). San Antonio, TX: Psychological Corporation.Google Scholar
Brown, T. A., & Naragon-Gainey, K. (2013). Evaluation of the unique and specific contributions of dimensions of the triple vulnerability model to the prediction of DSM-IV anxiety and mood disorder constructs. Behavior Therapy, 44, 277292. http://dx.doi.org/10.1016/j.beth.2012.11.002 CrossRefGoogle Scholar
Brown, T. A., White, K. S., Forsyth, J. P., & Barlow, D. H. (2004). The structure of perceived emotional control: Psychometric properties of a revised Anxiety Control Questionnaire. Behavior Therapy, 35, 7599. http://dx.doi.org/10.1016/S0005-7894(04)80005-4 CrossRefGoogle Scholar
Buela-Casal, G., Guillén-Riquelme, A., & Seisdedos, N. (2011). Cuestionario de ansiedad estado-rasgo: Adaptación española [State-trait anxiety inventory: Spanish adaptation] (8th Ed.). Madrid, Spain: TEA Ediciones.Google Scholar
DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: A non parametric approach. Biometrics, 44, 837845. http://dx.doi.org/10.2307/2531595 CrossRefGoogle ScholarPubMed
Diedenhofen, B., & Musch, J. (2015). Cocor: A comprehensive solution for the statistical comparison of correlations. PLoS ONE, 10, e0121945. http://dx.doi.org/10.1371/journal.pone.0121945 Google Scholar
Gallagher, M. W., Bentley, K. H., & Barlow, D. H. (2014). Perceived control and vulnerability to anxiety disorders: A meta-analytic review. Cognitive Therapy and Research, 38, 571584. http://dx.doi.org/10.1007/s10608-014-9624-x Google Scholar
Gallagher, M. W., Naragon-Gainey, K., & Brown, T. A. (2014). Perceived control is a transdiagnostic predictor of cognitive–behavior therapy outcome for anxiety disorders. Cognitive Therapy and Research, 38, 1022. http://dx.doi.org/10.1007/s10608-013-9587-3 Google Scholar
Garrido, L. E., Abad, F. J., & Ponsoda, V. (2013). A new look at Horn’s parallel analysis with ordinal variables. Psychological Methods, 18, 454474. http://dx.doi.org/10.1037/a0030005 Google Scholar
Gerolimatos, L. A., Gould, C. E., & Edelstein, B. A. (2012). Exploratory factor analysis of the Anxiety Control Questionnaire among older adults. Behavior Modification, 36, 600616. http://dx.doi.org/10.1177/0145445512443982 Google Scholar
Houck, P. R., Spiegel, D. A., Shear, M. K., & Rucci, P. (2002). Reliability of the self-report version of the Panic Disorder Severity Scale. Depression and Anxiety, 15, 183185. http://dx.doi.org/10.1002/da.10049 CrossRefGoogle ScholarPubMed
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 155. http://dx.doi.org/10.1080/10705519909540118 Google Scholar
Jennrich, R. I., & Bentler, P. M. (2011). Exploratory bi-factor analysis. Psychometrika, 76, 537549. http://dx.doi.org/10.1007/s11336-011-9218-4 Google Scholar
Jennrich, R. I., & Bentler, P. M. (2012). Exploratory bi-factor analysis: The oblique case. Psychometrika, 77, 442454. http://dx.doi.org/10.1007/s11336-012-9269-1 CrossRefGoogle ScholarPubMed
Mardiyono, M., Songwathana, P., & Petpichetchian, W. (2011). Concept analysis of perceived control. Nurse Media Journal of Nursing, 1, 225243.Google Scholar
Meng, X. L., Rosenthal, R., & Rubin, D. B. (1992). Comparing correlated correlation coefficients. Psychological Bulletin, 111, 172175. http://dx.doi.org/10.1037/0033-2909.111.1.172 Google Scholar
Morin, A. J. S., Arens, A. K., & Marsh, H. W. (2016). A bifactor exploratory structural equation modeling framework for the identification of distinct sources of construct-relevant psychometric multidimensionality. Structural Equation Modeling, 23, 116139. http://dx.doi.org/10.1080/10705511.2014.961800 Google Scholar
Muthén, L. K., & Muthén, B. O. (1998–2012). Mplus users guide (7th Ed.). Los Angeles, CA: Author.Google Scholar
Myers, N. D., Martin, J. J., Ntoumanis, N., Celimli, S., & Bartholomew, K. J. (2014). Exploratory bifactor analysis in sport, exercise, and performance psychology: A substantive-methodological synergy. Sport, Exercise, and Performance Psychology, 3, 258272. http://dx.doi.org/10.1037/spy0000015 CrossRefGoogle Scholar
Osma López, J., Barrada González, J. R., García-Palacios, A., & Botella Arbona, C. (2016). Influence of vulnerability factors in panic disorder severity. Psicothema, 28, 167173. http://dx.doi.org/10.7334/psicothema2015.223 Google Scholar
Osma, J., García-Palacios, A., Botella, C., & Barrada, J. R. (2014). Personality and anxiety sensitivity as a vulnerability factors in panic disorder. Behavioral Psychology, 22, 185201.Google Scholar
Peterson, R. A., & Reiss, S. (1992). Anxiety sensitivity index manual (2nd Ed.). Worthington, OH: International Diagnostic Systems.Google Scholar
Rapee, R. M., Craske, M. G., Brown, T. A., & Barlow, D. H. (1996). Measurement of perceived control over anxiety-related events. Behavior Therapy, 27, 279293. http://dx.doi.org/10.1016/S0005-7894(96)80018-9 Google Scholar
Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J. C., & Müller, M. (2011). pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12, 77. http://dx.doi.org/10.1186/1471-2105-12-77 Google Scholar
Sandín, B., Chorot, P., Lostao, L., Joiner, T. E., Santed, M. A., & Valiente, R. M. (1999). Escalas PANAS de afecto positivo y negativo: Validación factorial y convergencia transcultural [Positive and negative affect schedule: Factorial validation and transcultural convergence]. Psicothema, 11, 3751.Google Scholar
Sandín, B., Valiente, R. M., Chorot, P., & Santed, M. A. (2005). Propiedades psicométricas del índice de sensibilidad a la ansiedad [Psycometric properties of the anxiety sensitivity index]. Psicothema, 17, 478483.Google Scholar
Sanz, J., Perdigón, A. L., & Vázquez, C. (2003). Adaptación española del Inventario para la Depresión de Beck-II (BDI-II): 2. Propiedades psicométricas en población general [Spanish adaptation of the Beck Depression Inventory-II (BDI-II): 2. Psychometric properties in general population]. Clínica y Salud, 14, 249280.Google Scholar
Shujuan, W., Meihua, Q., & Jianxin, Z. (2009). Factorial structure of the Anxiety Control Questionnaire in Chinese adolescents. Journal of Psychoeducational Assessment, 27, 334344. http://dx.doi.org/10.1177/0734282908329830 Google Scholar
Spielberger, C. D., Gorsuch, R., & Lushene, R. (1970). Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologist Press.Google Scholar
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS Scales. Journal of Personality and Social Psychology, 54, 10631070. http://dx.doi.org/10.1037/0022-3514.54.6.1063 Google Scholar
Watson, D., & Naragon-Gainey, K. (2014). Personality, emotions, and the emotional disorders. Clinical Psychological Science, 2, 422442. http://dx.doi.org/10.1177/2167702614536162 Google Scholar
White, K. S., Brown, T. A., Somers, T. J., & Barlow, D. H. (2006). Avoidance behavior in panic disorder: The moderating influence of perceived control. Behaviour Research and Therapy, 44, 147157. http://dx.doi.org/10.1016/j.brat.2005.07.009 Google Scholar
Zebb, B. J., & Moore, M. C. (1999). Another look at the psychometric properties of the Anxiety Control Questionnaire. Behaviour Research and Therapy, 37, 10911103. http://dx.doi.org/10.1016/S0005-7967(98)00206-X Google Scholar