Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T18:11:02.780Z Has data issue: false hasContentIssue false

Inner and Outer Horizons of Time Experience

Published online by Cambridge University Press:  10 April 2014

Jiří Wackermann*
Affiliation:
Institute for Frontier Areas of Psychology and Mental Health, Freiburg i.Br., Germany
*
Correspondence concerning this article should be addressed to Jiri Wackermann. Abtl. Empirische und Analytische Psychophysik, Institut für Grenzgebiete der Psychologie und Psychohygiene, Wilhelmstrasse 3a, D-79098 Freiburg i.Br. (Germany). Phone: +49 761 2072171. Fax: +49 761 2072179. E-mail: [email protected]

Abstract

Human experience of temporal durations exhibits a multi-regional structure, with more or less distinct boundaries, or horizons, on the scale of physical duration. The inner horizons are imposed by perceptual thresholds for simultaneity (≈ 3 ms) and temporal order (≈ 30 ms), and are determined by the dynamical properties of the neural substrate integrating sensory information. Related to the inner horizon of experienced time are perceptual or cognitive “moments.” Comparative data on autokinetic times suggest that these moments may be relatively invariant (≈ 102 ms) across a wide range of species. Extension of the “sensible present” (≈ 3 s) defines an intermediate horizon, beyond which the generic experience of duration develops. The domain of immediate duration experience is delimited by the ultimate outer horizon at about ≈102 s, as evidenced by analysis of duration reproduction experiments (reproducibility horizon), probably determined by relaxation times of “neural accumulators.” Beyond these phenomenal horizons, time is merely cognitively (re)constructed, not actually experienced or “perceived,” a fact that is frequently ignored by contemporary time perception research. The nyocentric organization of time experience shows an interesting analogy with the egocentric organization of space, suggesting that structures of subjective space and time are derived from active motion as a common experiential basis.

La experiencia humana de las duraciones temporales exhibe una estructura multi-regional, con fronteras, u horizontes, más o menos definidos, en la escala de la duración física. Los umbrales perceptivos de la simultaneidad (≈3 ms) y el orden temporal (≈30 ms) imponen los horizontes internos y los determinan las propiedades dinámicas del substrato neuronal que integra la información sensorial. Los “momentos” preceptuales o cognitivos se relacionan con el horizonte interno del tiempo experimentado. Los datos comparativos sobre tiempos autoquinéticos sugieren que estos momentos pueden ser relativamente invariantes (≈102 ms) a través de una amplia variedad de especies. La extensión del “presente sensible” (≈3 s) define un horizonte intermedio, a partir del cual se desarrolla la experiencia genérica de la duración. El dominio de experiencia de duración inmediata es delimitado por el último horizonte externo en aproximadamente ≈102 s, como demuestra el análisis de los experimentos de la reproducción de la duración (la reproducibilidad del horizonte), probablemente determinado por los tiempos de relajación de los “acumuladores neuronales.” Más allá de estos horizontes fenomenológicos, el tiempo meramente se (re)construye cognitivamente, no es experimentado ni “percibido”, un hecho que a menudo es ignorado por la investigación contemporánea de la percepción del tiempo. La organización niocéntrica de la experiencia del tiempo muestra una interesante analogía con la organización egocéntrica del espacio, sugiriendo que las estructuras de espacio y tiempo subjetivos se derivan del movimiento activo como una base experimental común.

Type
Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, H.F. (1912). Autokinetic sensations. Psychological Monographs, 14, 145.CrossRefGoogle Scholar
Atmanspacher, H., & Filk, T. (2003). Discrimination and sequentialization of events in perception. In Buccheri, R., Saniga, M., & Stuckey, W.M. (Eds.), The nature of time: Geometry, physics and perception (pp. 6775). Dordrecht: Kluwer.CrossRefGoogle Scholar
Baars, B.J. (2005). Subjective experience is probably not limited to humans: The evidence from neurobiology and behaviour. Consciousness and Cognition 14, 721.CrossRefGoogle ScholarPubMed
von Baer, K.E. (1864). Welche Auffassung der lebenden Natur ist die richtige? In von Baer, K.E. (Ed.), Reden gehalten in wissenschaftlichen Versammlungen und kleinere Aufsätze vermischten Inhalts. Theil 1: Reden (pp. 237284). St. Petersburg: Schmitzdorff.CrossRefGoogle Scholar
Bergson, H. (1888). Essai sur les données immédiates de la conscience. Paris: Alcan.Google Scholar
Berkeley, G. (1707/1996). Philosophical commentaries. In Ayers, M.R. (Ed.), George Berkeley, philosophical works, including the works on vision (pp. 305412). London: Dent, 1996 (Original work published in 1707).Google Scholar
Berkeley, G. (1730/1996). Philosophical correspondance between Berkeley and Samuel Johnson. In Ayers, M.R. (Ed.), George Berkeley, philosophical works, including the works on vision (pp. 413436). London: Dent, 1996 (Original work published in 1730).Google Scholar
Bindra, D., & Waksberg, H. (1956). Methods and terminology in studies of time estimation. Psychological Bulletin, 53, 155159.CrossRefGoogle ScholarPubMed
Boslough, J. (1990). The enigma of time. National Geographic, 177, 109132.Google Scholar
Charnov, E.L. (1993). Life History invariants: Some explorations of symmetry in evolutionary ecology. Oxford: Oxford University Press.CrossRefGoogle Scholar
Cohen, J. (1964). Psychological time. Scientific American, 211, 116124.CrossRefGoogle ScholarPubMed
Dehaene, S. (1993). Temporal oscillations in human perception. Psychological Science, 4, 264270.CrossRefGoogle Scholar
Dobbs, H.A.C. (1972). The dimensions of the sensible present. In Fraser, J.T, Haber, F.C., & Müller, G.H. (Eds.), The Study of Time (pp. 274292). Berlin: Springer.CrossRefGoogle Scholar
Efron, R. (1972). The measurement of perceptual durations. In Fraser, J.T., Haber, F.C., & Müller, G.H. (Eds.), The Study of Time (pp. 207218). Berlin: Springer.CrossRefGoogle Scholar
Eisler, A.D. (2003). The human sense of time: Biological, cognitive and cultural considerations. In Buccheri, R., M, Saniga, & Stuckey, W.M. (Eds.), The Nature of time: Geometry, physics and perception (pp. 518). Dordrecht: Kluwer.CrossRefGoogle Scholar
Eisler, H. (1975). Subjective duration and psychophysics. Psychological Review, 82, 429450.CrossRefGoogle ScholarPubMed
Fröhlich, F.W. (1923). Über die Messung der Empfindungszeit. Zeitschrift für Sinnesphysiologie, 54, 5878.Google Scholar
Geissler, H.G. (1987). The temporal architecture of central information processing: Evidence for a tentative time-quantum model. Psychological Research, 49, 99106.CrossRefGoogle Scholar
Griffin, D.R., & Speck, G.B. (2004). New evidence of animal consciousness. Animal Cognition, 7, 518.CrossRefGoogle ScholarPubMed
Grondin, S. (2001). From physical time to the first and second moments of psychological time. Psychological Bulletin, 127, 2244.CrossRefGoogle Scholar
Havel, I.M. (2005). A structure of experienced time. In Buccheri, R., Saniga, M., & Elitzur, A. (Eds.), Endophysics, time, quantum, and the subjective (pp. 379404). Singapore: World Scientific.Google Scholar
Husserl, E. (1928). Vorlesungen zur Phänomenologie des inneren Zeitbewuβtseins (edited by Heidegger, M.), Niemeyer: Tübingen. (3rd unmodified edition, 2000.)Google Scholar
Husserl, E. (1976). Die Krisis der europäischen Wissenschaften und die transzendentale Phänomenologie. (Husserliana, Volume 6. Edited by Biemel, W.). Hague: Nijhoff.CrossRefGoogle Scholar
James, W. (1890). The principles of psychology, Volume I. New York: Holt.CrossRefGoogle Scholar
Jech, R., Dušek, P., Wackermann, J., & Vymazal, J. (2005). Cumulative blood-oxygenation level dependent signal changes support the “time accumulator” hypothesis. NeuroReport, 16, 14671471.CrossRefGoogle ScholarPubMed
Kant, I. (1998) Kritik der reinen Vernunft. (Edited by von Timmermann, J.), Hamburg. (Original work published 1787.)Google Scholar
Kull, K. (1999). Outlines for a post-Darwinian biology. Folia Baeriana, 7, 129142.Google Scholar
Lehmann, D. (1990). Past, present and future of topographic mapping. Brain Topography, 3, 191202.CrossRefGoogle ScholarPubMed
Lehmann, D., Ozaki, H., & Pal, I. (1987). EEG alpha map series: Brain micro-states by space-oriented adaptive segmentation. Electroencephalography and Clinical Neurophysiology, 67, 271288.CrossRefGoogle ScholarPubMed
Lehmann, H.E. (1967). Time and psychopathology. Annals of New York Academy of Sciences, 138, 798821.CrossRefGoogle Scholar
Mach, E. (1906). Space and geometry in the light of physiological, psychological, and physical inquiry. La Salle, IL: Open Court.Google Scholar
McMahon, T.A., & Bonner, J.T. (1983). On size and life. New York: Scientific American Books.Google Scholar
Minkowski, H. (1909). Raum und Zeit. Physikalische Zeitschrift, 10, 104111.Google Scholar
Morrone, M.C., Ross, J., & Burr, D. (2005). Saccadic eye movements cause compression of time as well as space. Nature Neuroscience, 8, 950954.CrossRefGoogle ScholarPubMed
Nichols, H. (1891). The psychology of time. American Journal of Psychology, 3, 453529.CrossRefGoogle Scholar
(Quoted in Ornstein, R.E., On the experience of time [pp. 1617]. Harmondsworth, Penguin Books, 1969.)Google Scholar
Patterson, R. (1990). Perceptual moment models revisited. In Block, R.A. (Ed.), Cognitive models of psychological time (pp. 85100). Hillsdale, NJ: Erlbaum.Google Scholar
Pöppel, E. (1972). Oscillations as possible basis for time perception. In Fraser, J.T., Haber, F.C., & Müller, G.H. (Eds.), The study of time (pp. 219241). Berlin: Springer.CrossRefGoogle Scholar
Pöppel, E. (1978). Time perception. In Held, R., Leibowitz, H.W., & Teuber, H.L. (Eds.), Handbook of sensory physiology, Vol. 8: Perception (pp. 713729). Berlin: Springer.Google Scholar
Pöppel, E. (1997). The brain's way to create “nowness.” In Atmanspacher, H. & Ruhnau, E. (Eds.), Time, temporality, now (pp. 107120). Berlin: Springer.CrossRefGoogle Scholar
Pöppel, E. (2004). Lost in time: A historical frame, elementary processing units and the 3-second window. Acta Neurobiologiae Experimentalis, 64, 295301.CrossRefGoogle Scholar
Richards, W. (1964). Time estimates measured by reproduction. Perceptual and Motor Skills, 18, 929943.CrossRefGoogle ScholarPubMed
Riemann, G.F.B. (1953/1958). Fragmente philosophischen Inhalts. In Weber, H. & Dedekind, R. (Eds.), The collected works of Bernhard Riemann. New York: Dover (Originally published in 1953).Google Scholar
Shallice, T. (1964). The detection of change and the perceptual moment hypothesis. British Journal of Statistical Psychology, 17, 113135.CrossRefGoogle Scholar
Späti, J.P. (2005). Time perception in the context of circadian activity. Diploma thesis, University of Freiburg, Faculty of Biology.Google Scholar
Spiegelberg, H. (1994). The phenomenological movement. A historical introduction (3rd ed.). Dordrecht: Kluwer.CrossRefGoogle Scholar
Stroud, J. M. (1954). The fine structure of psychological time. In Quastler, H. (Ed.), Information theory in psychology (pp. 174207). Glencoe, IL: Free Press.Google Scholar
Treisman, M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the “internal clock.” Psychological Monographs, 77 (whole number 576), 131.CrossRefGoogle Scholar
Varela, F.J. (1999). A dimly perceived horizon: The complex meeting ground between physical and inner time. Annals of New York Academy of Sciences, 879, 143153.CrossRefGoogle Scholar
Vicario, G.B. (2003). Temporal displacement. In Buccheri, R., Saniga, M., & Stuckey, W.M. (Eds.), The nature of time: Geometry, physics and perception (pp. 5375). Dordrecht: Kluwer.CrossRefGoogle Scholar
Vierordt, K. (1868). Der Zeitsinn nach Versuchen. Tübingen: Laupp.Google Scholar
von Steinbüchel, N., Wittmann, M., & Szelag, E. (1999). Temporal constraints of perceiving, generating, and integrating information: Clinical indications. Restorative Neurology and Neuroscience, 14, 167182.Google ScholarPubMed
von Uexküll, J. (1928). Theoretische Biologie (2nd ed.). Berlin: Springer.CrossRefGoogle Scholar
Wackermann, J. (2005). Experience of time passage: Phenomenology, psychophysics, and biophysical modelling. In Buccheri, R., Saniga, M., & Elitzur, A. (Eds.), Endophysics, Time, quantum, and the subjective (pp. 189208). Singapore: World Scientific.CrossRefGoogle Scholar
Wackermann, J., & Ehm, W. (2006). The dual klepsydra model of internal time representation and time reproduction. Journal of Theoretical Biology, 239, 482493.CrossRefGoogle ScholarPubMed
Wackermann, J., Ehm, W., & Späti, J. (2003). The “klepsydra model” of internal time representation. In Berglund, B. & Borg, E. (Eds.), Fechner Day 2003 (pp. 331336). International Society for Psychophysics, Stockholm.Google Scholar
Wackermann, J., Späti, J., & Ehm, W. (2005). Individual response characteristics in time reproduction and time production tasks. In Monahan, J., Sheffert, S., & Townsend, J.T. (Eds.), Fechner Day 2005 (pp. 359364). Mt Pleasant, MI: International Society for Psychophysics.Google Scholar
Wittgenstein, L. (1984). Tractatus logico-philosophicus. (Werkausgabe, Band I.) Frankfurt: Suhrkamp (Original work published 1918.).Google Scholar
Woodrow, H. (1930). The reproduction of temporal intervals. Journal of Experimental Psychology, 13, 473499.CrossRefGoogle Scholar
Woodrow, H. (1951). Time perception. In Stevens, S.S. (Ed.), Handbook of experimental psychology (pp. 12241236). New York: Wiley.Google Scholar