Article contents
Factors Affecting Visual Inference in Single-Case Designs
Published online by Cambridge University Press: 10 January 2013
Abstract
Visual inspection remains the most frequently applied method for detecting treatment effects in single-case designs. The advantages and limitations of visual inference are here discussed in relation to other procedures for assessing intervention effectiveness. The first part of the paper reviews previous research on visual analysis, paying special attention to the validation of visual analysts' decisions, inter-judge agreement, and false alarm and omission rates. The most relevant factors affecting visual inspection (i.e., effect size, autocorrelation, data variability, and analysts' expertise) are highlighted and incorporated into an empirical simulation study with the aim of providing further evidence about the reliability of visual analysis. Our results concur with previous studies that have reported the relationship between serial dependence and increased Type I rates. Participants with greater experience appeared to be more conservative and used more consistent criteria when assessing graphed data. Nonetheless, the decisions made by both professionals and students did not match sufficiently the simulated data features, and we also found low intra-judge agreement, thus suggesting that visual inspection should be complemented by other methods when assessing treatment effectiveness.
La inspección visual sigue siendo el método más utilizado para detectar tratamientos efectivos en diseños de caso único. El presente trabajo comenta las ventajas y limitaciones de la inferencia visual en relación con otros procedimientos empleados para evaluar la efectividad de las intervenciones. La primera parte del manuscrito revisa investigaciones previas sobre el análisis visual, enfocando la validación de las decisiones de los analistas visuales, la concordancia entre jueces y las tasas de falsas alarmas y omisión. Se hace énfasis en los factores que más afectan a la inspección visual (i.e., tamaño del efecto, autocorrelación, variabilidad en los datos y experiencia de los analistas) y éstos se incluyen en un estudio de simulación que pretende aportar evidencias sobre la calidad del análisis visual. Nuestros resultados coinciden con estudios previos sobre la relación entre la dependencia serial y un incremento en las tasas de error Tipo I. Los participantes con mayor experiencia parecen ser más conservadores y utilizan criterios más consistentes al evaluar datos gráficos. No obstante, tanto las decisiones de los profesionales y como las de los estudiantes no se corresponden lo suficiente con los datos simulados. Además, se encontró una baja consistencia intra-jueces, sugiriendo que la inspección visual se debería complementar por otros métodos a la hora de evaluar la efectividad de los tratamientos.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2009
References
- 27
- Cited by