Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T14:06:45.386Z Has data issue: false hasContentIssue false

Enhanced Processing of Emotional Gist in Peripheral Vision

Published online by Cambridge University Press:  10 January 2013

Aída Gutiérrez
Affiliation:
Universidad de La Laguna (Spain)
Lauri Nummenmaa
Affiliation:
University of Turku (Finland)
Manuel G. Calvo*
Affiliation:
Universidad de La Laguna (Spain)
*
Correspondence concerning this article should be addressed to Manuel G. Calvo. Department of Cognitive Psychology, Universidad de La Laguna. 38205 Tenerife (Spain). E-mail: [email protected]

Abstract

Emotional (pleasant or unpleasant) and neutral scenes were presented foveally (at fixation) or peripherally (5.2° away from fixation) as primes for 150 ms. The prime was followed by a mask and a centrally presented probe scene for recognition. The probe was either identical in specific content (i.e., same people and objects) to the prime, or it was related to the prime in general content and affective valence. The probe was always different from the prime in color, size, and spatial orientation. Results showed an interaction between prime location and emotional valence for the recognition hit rate, but also for the false alarm rate and correct rejection times. There were no differences as a function of emotional valence in the foveal display condition. In contrast, in the peripheral display condition both hit and false alarm rates were higher and correct rejection times were longer for emotional than for neutral scenes. It is concluded that emotional gist, or a coarse affective impression, is extracted from emotional scenes in peripheral vision, which then leads to confuse them with others of related affective valence. The underlying neurophysiological mechanisms are discussed. An alternative explanation based on the physical characteristics of the scene images was ruled out.

En un paradigma de reconocimiento se presentaron fotografías-estímulo (prime) de escenas emocionales y neutras durante 150 ms cada una, bien fovealmente (en el centro de fijación visual) o periféricamente (a 5.2° de separación), seguidas por una máscara y una fotografía de prueba (probe). La fotografía prime y la probe podían ser idénticas en contenido específico (las mismas personas y objetos) o únicamente relacionadas en su contenido general y valencia emocional (agradables, desagradables, o neutras). Los resultados mostraron un efecto interactivo de la ubicación espacial y la valencia emocional sobre la tasa de aciertos, pero también la de falsas alarmas y el tiempo de rechazos correctos: No hubo diferencias en estas variables en función de la valencia emocional en la ubicación foveal; en cambio, en la periférica, tanto los aciertos como las falsas alarmas fueron más frecuentes, y el tiempo de los rechazos correctos fue más lento, para las escenas de contenido emocional que las neutras. Los autores concluyen que las personas obtienen una impresión genérica de la valencia afectiva de los estímulos pictóricos en visión periférica, que lleva a confundir las escenas con otras de similar valencia afectiva. Se examinan los mecanismos neurofisiológicos involucrados en este efecto de percepción emocional periférica. Se rechaza la hipótesis de que los efectos del contenido emocional de las imágenes sean debidos a diferencias en las propiedades físicas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Calvo, M.G. (2006). Processing of emotional visual scenes outside the focus of spatial attention: The role of eccentricity. Visual Cognition, 13, 666676.CrossRefGoogle Scholar
Calvo, M.G., & Avero, P. (2006). Affective priming with pictures of emotional scenes: The role of perceptual similarity and category relatedness. Spanish Journal of Psychology, 9, 1018.Google Scholar
Calvo, M.G., Nummenmaa, L., & Hyönä, J. (2008). Emotional scenes in peripheral vision: Selective orienting and gist processing, but not content identification. Emotion, 8, 6880.CrossRefGoogle Scholar
Carretié, L., Hinojosa, J. A., López-Martín, S., & Tapia, M. (2007). An electrophysiological study on the interaction between emotional content and spatial frequency of visual stimuli. Neuropsychologia, 45, 11871195.CrossRefGoogle Scholar
Castelhano, M.S., & Henderson, J.M. (2008). The influence of color on the perception of scene gist. Journal of Experimental Psychology: Human Perception and Performance, 34, 660675.Google ScholarPubMed
Center for the Study of Emotion and Attention [CSEA-NIMH] (2005). The International Affective Picture System: Digitized photographs. Gainesville, FL: The Center for Research in Psychophysiology, University of Florida.Google Scholar
Cuthbert, B.N., Schupp, H.T., Bradley, M.M., Birbaumer, N., & Lang, P.J. (2000). Brain potentials in affective picture processing: Covariation with autonomic arousal and affective report. Biological Psychology, 52, 95111.CrossRefGoogle ScholarPubMed
De Cesarei, A., & Codispoti, M. (2008). Fuzzy picture processing: Effects of size reduction and blurring on emotional processing. Emotion, 8, 352363.CrossRefGoogle ScholarPubMed
Eimer, M., & Holmes, A. (2007). Event-related brain potential correlates of emotional face processing. Neuropsychologia, 45, 1531.CrossRefGoogle ScholarPubMed
Greene, M.R., & Oliva, A. (2009). Recognition of natural scenes from global properties: Seeing the forest without representing the trees. Cognitive Psychology, 58, 137176.CrossRefGoogle ScholarPubMed
Gordon, R.D. (2004). Attentional allocation during the perception of scenes. Journal of Experimental Psychology: Human Perception and Performance, 30, 760777.Google ScholarPubMed
Gofaux, V., Jacques, C., Moraux, A., Oliva, A., Schyns, P.G., Rossion, B. (2005). Disagnostic colours contribute to the early stages of scene categorization: Behavioural and neurophysiological evidence. Visual Cognition, 12, 878892.CrossRefGoogle Scholar
Hermans, D., & Spruyt, A., De Houwer, J., & Eelen, P. (2003). Affective priming with subliminally presented pictures. Canadian Journal of Experimental Psychology, 57, 97114.CrossRefGoogle ScholarPubMed
Itti, L. (2006). Quantitative modeling of perceptual salience at human eye position. Visual Cognition, 14, 959984.CrossRefGoogle Scholar
Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40, 14891506.CrossRefGoogle ScholarPubMed
Kawasaki, H., Adolphs, R., Kaufman, O., Damasio, H., Damasio, A. R., Granner, M., Bakken, H., Hori, T., & Howard, M.A. III. (2001). Single-neuron responses to emotional visual stimuli recorded in human ventral prefrontal cortex. Nature Neuroscience, 4, 1516.CrossRefGoogle ScholarPubMed
Nummenmaa, L., Hyönä, J., & Calvo, M.G. (2006). Eye movement assessment of selective attentional capture by emotional pictures. Emotion, 6, 257268.CrossRefGoogle ScholarPubMed
Nummenmaa, L., Hyönä, J., & Calvo, M.G. (2009). Emotional scene content drives the saccade generation system reflexively. Journal of Experimental Psychology: Human Perception and Performance, 35, 305323.Google ScholarPubMed
Öhman, A., & Soares, J.J. (1998). Emotional conditioning to masked stimuli: Expectancies for aversive outcomes following non-recognized fear-relevant stimuli. Journal of Experimental Psychology: General, 127, 6982.CrossRefGoogle Scholar
Oya, H., Kawasaki, H., Howard, M.A. III, & Adolphs, R. (2002). Electrophysiological responses in the human amygdala discriminate emotion categories of complex visual stimuli. Journal of Neuroscience, 22, 95029512.CrossRefGoogle ScholarPubMed
Potter, M.C., Staub, A., O'Connor, D.H. (2004). Pictorial and conceptual representations of glimpsed pictures. Journal of Experimental Psychology: Human Perception and Performance, 30, 478489.Google ScholarPubMed
Rousselet, G. A., Joubert, O. R., & Fabre-Thorpe, M. (2005). How long to get to the “gist” of real-world natural scenes? Visual Cognition, 12, 852877.CrossRefGoogle Scholar
Sabatinelli, D., Bradley, M.M., Fitzsimmons, J.R., & Lang, P.J. (2005). Parallel amygdala and inferotemporal activation reflect emotional intensity and fear relevance. Neuroimage, 24, 12651270.CrossRefGoogle ScholarPubMed
Sampanes, A.C., Tseng, P., & Bridgeman, B. (2008). The role of gist in scene recognition. Vision Research. 48, 22752283.CrossRefGoogle ScholarPubMed
Snodgrass, J.G., & Corwin, J. (1988). Pragmatics of measuring recognition memory: Applications to dementia and amnesia. Journal of Experimental Psychology: General, 117, 3450.CrossRefGoogle ScholarPubMed
Thorpe, S.J., Gegenfurtner, K.R., Fabre-Thorpe, M., & Bülthoff, H.H. (2001). Detection of animals in natural images using far peripheral vision. European Journal of Neurosciences, 14, 869–76.CrossRefGoogle ScholarPubMed
Underwood, G. (2005). Eye fixations on pictures of natural scenes: Getting the gist and identifying the components. In Underwood, G. (Ed.), Cognitive processes in eye guidance (pp. 163187). Oxford: Oxford University Press.CrossRefGoogle Scholar
Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2003). Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature Neuroscience, 6, 624631.CrossRefGoogle ScholarPubMed
Vuilleumier, P. (2005). How brains beware: Neural mechanisms of emotional attention. Trends in Cognitive Sciences, 9, 585594.CrossRefGoogle ScholarPubMed
Vuilleumier, P., & Pourtois, G. (2007). Distributed and interactive brain mechanisms during emotion face perception: Evidence from functional neuroimaging. Neuropsychologia, 45, 174194.CrossRefGoogle ScholarPubMed
Zald, D.H. (2003). The human amygdala and the emotional evaluation of sensory stimuli. Brain Research Reviews, 41, 88123.CrossRefGoogle ScholarPubMed