Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T19:22:24.545Z Has data issue: false hasContentIssue false

Effects of Mercury Chloride (HgCl2) on Betta Splendens Aggressive Display

Published online by Cambridge University Press:  10 January 2013

Bruno de Matos Mansur*
Affiliation:
Universidade Federal do Pará (Brazil)
Caio Neno Silva Cavalcante
Affiliation:
Universidade Federal do Pará (Brazil)
Bruno Rodrigues dos Santos
Affiliation:
Universidade Federal do Pará (Brazil)
Amauri Gouveia Jr.
Affiliation:
Universidade Federal do Pará (Brazil)
*
Correspondence concerning this article should be addressed to Bruno de Matos Mansur. Universidade Federal do Pará - Rua Augusto Corrêa, 01 - Guamá. CEP 66075-110. Caixa postal 479. Belém - Pará – Brazil. E-mail: [email protected]

Abstract

Mercury chloride (HgCl2) is a toxic mercury salt and a major pollutant, that can be found in soil, water and air, with influences on behavior, physiology and adaptation to the environment. In this study two experiments were designed to examine interactions and effects of HgCl2 on some behavioral patterns of Siamese fighting fish (Betta splendens). In the first experiment we tested the effect of a progressive dose (five 0.04 mg) on aggressive display with exposure to a mirror, whereas in the second experiment we tested the effect of an acute dose (0.2 mg) on the aggressive display with exposure to a mirror. The experiments were performed on 5 consecutive sessions at intervals of 18 hours between sessions. Differences of performance were shown by subjects in the acute and progressive treatments when compared with a control treatment in the majority of behaviors evaluated, namely Floating, Slow Swimming, Wavy Swimming, Emerging, Bend, Square Move and Motor Display Components. Acute treatment was different from control only on Show Body, while the progressive group differed on Resting, Horizontal Display and Appropriate Display Components. Differences between Correlate Display Components and Total were also shown. Both the acute and progressive contamination with HgCl2 decrease the motor activity in the aggressive display, mirror-image test of Betta splendens, mainly on the progressive dose. This implies an impairment on feeding behavior, predator avoidance, reproductive behavior, mate choice and territoriality. These results suggest that in this fish species, the progressive dose has a greater effect on behavior in general and that both the acute and progressive contamination with mercury chloride affect many other aspects of behavior.

El cloruro de mercurio (HgCl2) es una sal de mercurio tóxica y un contaminante importante, que se puede encontrar en el suelo, agua y aire, y que influye en el comportamiento, la fisiología y la adaptación al medio ambiente. En este estudio, dos experimentos fueron diseñados para examinar las interacciones y los efectos del HgCl2 en algunos patrones de comportamiento de peces luchadores siameses (Betta splendens). En el primer experimento se evaluó el efecto de una dosis progresiva (cinco 0,04 mg) en la exhibición agresiva con exposición a un espejo, mientras que en el segundo experimento se evaluó el efecto de una dosis aguda (0,2 mg) en la exhibición agresiva con exposición a un espejo. Los experimentos se realizaron en 5 sesiones consecutivas a intervalos de 18 horas entre sesiones. Se muestran diferencias de rendimiento por los sujetos en los tratamientos agudo y progresivas en comparación con un tratamiento de control en la mayoría de las conductas evaluadas, es decir, Flotación, Nado lento, Nado ondulado, Emergente, Doblado, Movimiento cuadrado y componentes de exhibición motora. El tratamiento agudo difiere del control sólo en Mostrar cuerpo, mientras que el grupo progresivo difiere en Reposo, Exhibición horizontal y en Componentes adecuados de exhibición. También se muestran las diferencias entre Correlación entre los componentes de exhibición y Total. Tanto la contaminación aguda como progresiva con HgCl2 disminuye la actividad motora en la exhibición agresiva en la prueba de imagen-espejo de Betta splendens, principalmente de la dosis progresiva. Esto implica un deterioro en el comportamiento de alimentación, de evitación a los depredadores, en el comportamiento reproductivo, la elección de pareja y la territorialidad. Estos resultados sugieren que en esta especie de pez, la dosis progresiva tiene un efecto mayor en el comportamiento en general, y que tanto la contaminación aguda como la progresiva con cloruro de mercurio afecta a muchos otros aspectos del comportamiento.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azevedo, F. A. (2003). Toxicologia do Mercúrio [Mercury's toxicology]. São Carlos/São Paulo, Brazil: RiMa/InterTox.Google Scholar
Barboni, M. T. S., da Costa, M. F., Moura, A. L. de A., Santana, C. F., Gualtieria, M., Lago, M., … Ventura, D. F. (2008). Visual field losses in workers exposed to mercury vapor. Environmental Research, 107, 124131. http://dx.doi.org/10.1016/j.envres.2007.07.004CrossRefGoogle ScholarPubMed
Bloom, N. S. (1992). On the chemical form of mercury in edible fish and marine invertebrates. Canadian Journal of Fisheries and Aquatic Sciences, 49, 10101017. http://dx.doi.org/10.1139/f92-113CrossRefGoogle Scholar
Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: A general review. Chemosphere, 40, 13351351. http://dx.doi.org/10.1016/S0045-6535(99)00283-0CrossRefGoogle ScholarPubMed
Bronstein, P. M. (1980). Betta splendens: A territorial note. Bulletin of the Psychonomic Society, 16, 484485.Google Scholar
Bronstein, P. M. (1981). Commitments to aggression and nest sites in male Betta splendens. Journal of Comparative Physiology and Psychology, 95, 436449. http://dx.doi.org/10.1037/h0077780CrossRefGoogle ScholarPubMed
Bronstein, P. M. (1982). Breeding, paternal behavior, and their interruption in Betta splendens. Animal Learning & Behavior, 10, 145151. http://dx.doi.org/10.3758/BF03212262CrossRefGoogle Scholar
Bronstein, P. M. (1985). Predictors of dominance in male Betta splendens. Journal of Comparative Psychology, 99, 4755. http://dx.doi.org/10.1037//0735-7036.99.1.47CrossRefGoogle ScholarPubMed
Costa, M. F., Tomaza, S., de Souza, J. M., Silveira, L. C. de L., & Ventura, D. F. (2008). Electrophysiological evidence for impairment of contrast sensitivity in mercury vapor occupational intoxication. Environmental Research, 107, 132138. http://dx.doi.org/10.1016/j.envres.2007.10.007CrossRefGoogle ScholarPubMed
Evans, C. S. (1985). Display vigor and subsequent fight performance in the Siamese fighting fish, Betta splendens. Behavioral Processes, 11, 113121. http://dx.doi.org/10.1016/0376-6357(85)90053-1CrossRefGoogle Scholar
Fjeld, E., Haugen, O. T., & Vøllestad, L. A. (1998). Permanent impairment in the feeding behavior of grayling (Thymallus thymallus) exposed to methylmercury during embryogenesis. The Science of the Total Environment, 213, 247254. http://dx.doi.org/10.1016/S0048-9697(98)00097-7CrossRefGoogle ScholarPubMed
Giménez-Llort, L., Ahlbom, E., Dare, E., Vahter, M., Ögren, S. O., & Ceccatelli, S. (2001). Prenatal exposure to methylmercury changes dopamine-modulated motor activity during early ontogeny: age and gender-dependent effects. Environmental Toxicology and Pharmacology, 9, 6170. http://dx.doi.org/10.1016/S1382-6689(00)00060-0CrossRefGoogle ScholarPubMed
Godin, J. G., Dill, P. A., & Drury, D. E. (1974). Effects of thyroid hormones on behavior of yearling Atlantic salmon (Salmo salar). Journal of the Fisheries Research Board of Canada, 313, 17871790. http://dx.doi.org/10.1139/f74-227CrossRefGoogle Scholar
Gouveia, A. Jr., Oliveira, C. M., Romão, C. F., Brito, T. M., & Ventura, D. F. (2007). Effects of trophic poisoning with methylmercury on the appetitive elements of the agonistic sequence in fighting-fish (Betta splendens). The Spanish Journal of Psychology, 10, 436448.CrossRefGoogle ScholarPubMed
Gouveia, A. Jr., Oliveira-Ribeiro, C. A., Costa, J. A. M., Vicenzi, T. R., Ribas, S., Silva, M. F., & Lima, S. M. A. (2003). Determinação da LC50 do metil mercúrio para o peixe danio rerio [Determining the methylmercury LD50 for the danio rerio fish] In XVIII Reunião Anual da Federação de Sociedades de Biologia experimental (FeSBE), Pinhais, Brazil.Google Scholar
Gutierrez, L. L.P. (2002). Avaliação do estresse oxidativo sistêmico e órgão-específico na intoxicação crônica por cloreto de mercúrio [Evaluating sistemic and organ-specifc oxidative stress on cronic Mercury chloride poisoning]. (Master's thesis). Universidade Federal do Rio Grande do Sul. Porto Alegre, Brazil. Retrieved from http://hdl.handle.net/10183/3606Google Scholar
Harris, R. C., & Bodaly, R. A. (1998). Temperature, growth and dietary effects on fish mercury dynamics on two Ontario lakes. Biogeochemistry, 40, 175187. http://dx.doi.org/10.1023/A:1005986505407CrossRefGoogle Scholar
Hartman, D. E. (1995). Neuropsychological Toxicology: Identification and assessment of human neurotoxic syndromes (2nd Ed.). New York, NY: Springer.CrossRefGoogle Scholar
Kania, H. J., & O'Hara, J. (1974). Behavioral alterations in a simple predator-prey system due to sublethal exposure to mercury. Transactions of the American Fisheries Society, 103, 134136. http://dx.doi.org/10.1577/1548-8659(1974)103<134:BAIASP>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Katz, A. H., & Katz, H. M. (1978). Effects of DL–thyroxine on swimming speed in pearl danio Brachydanio albolineatus (Blyth). Journal of Fish Biology, 12, 527530. http://dx.doi.org/10.1111/j.1095-8649.1978.tb04198.xCrossRefGoogle Scholar
Klaassen, C. D., Amdur, M. O., & Doull, J. (1986). Toxicology (3rd Ed.). The Basic Science of Poisons. New York, NY, Macmillan.Google Scholar
Klein, R. M., Figler, M. H., & Peeke, H. V. S. (1976). Modification of consummatory (attack) behavior resulting from prior habituation of appetitive (threat) components of the agonistic sequence in male Betta splendens (Pisces, Belontiidae). Behaviour, 58, 125. http://dx.doi.org/10.1163/156853976X00217CrossRefGoogle Scholar
MacDougal, K. C., Johnson, M. D., & Burnett, K. G. (1996). Exposure to mercury alters early activation events in fish leukocytes. Environmental Health Perspectives, 104, 11021106. http://dx.doi.org/10.1289/ehp.961041102CrossRefGoogle ScholarPubMed
Meliska, C. J., Meliska, J. A., & Peeke, H. V. S. (1980). Threat displays and combat aggression in Betta splendens following visual exposure to conspecifics and one-way mirrors. Behavioral and Neural Biology, 28, 473486. http://dx.doi.org/10.1016/S0163-1047(80)91842-7CrossRefGoogle ScholarPubMed
Newland, C. M., Paletz, E. M., Donlin., W. D., & Banna, K. M. (2006). Developmental behavioral toxicity of methylmercury: Consequences, conditioning and cortex. Animal Models of Cognitive Impairment, 13, 101146.Google Scholar
Niimi, A. J. (1987). Biological half-lives of chemicals in fishes (review). Reviews of Environmental Contamination and Toxicology, 99, 146.Google Scholar
Ottoni, E. B. (2000). EthoLog 2.2: A tool for the transcription and timing of behavior observation sessions. Behavior Research Methods Instruments & Computers, 32, 446449. http://dx.doi.org/10.3758/BF03200814CrossRefGoogle ScholarPubMed
Reed., M. N., & Newland, C. M. (2007). Prenatal methylmercury exposure increases responding under clocked and unclocked fixed interval schedules of reinforcement. Neurotoxicology and Teratology, 29, 492502. http://dx.doi.org/10.1016/j.ntt.2007.03.002CrossRefGoogle ScholarPubMed
Reed., M. N., Paletz., E. M., & Newland., C. M. (2006). Gestational exposure to methylmercury and selenium: Effects on a spatial discrimination reversal in adulthood. Neurotoxicology, 27, 721732. http://dx.doi.org/10.1016/j.neuro.2006.03.022CrossRefGoogle ScholarPubMed
Santana, C. F., Bimler, D. L., Paramei, G. V., Oiwa, N. N., Barboni, M. T. S., Costa, M., … Ventura, D. F. (2010). Color-space distortions following long-term occupational exposure to mercury vapor. Ophthalmic and Physiological Optics, 30, 724730.CrossRefGoogle Scholar
Santos, B. R. (2009). Efeitos da intoxicação progressiva e aguda de chumbo sobre parâmetros comportamentais do Betta splendens: Escototaxia e display agressivo [Effects of acute and proggressive poisoning with lead on Betta splendens escototaxy and aggressive display] (Unpublished master's thesis), Universidade Estadual Paulista. Bauru, Brasil. Retrieved from http://www.athena.biblioteca.unesp.br/exlibris/bd/bba/33004056085P0/2009/santos_br_me_bauru.pdfGoogle Scholar
Simpson, M. J. A. (1968). The display of the Siamese fighting fish, Betta splendens. Animal Behavior Monographs, 1, 173.Google Scholar
Smith, G. M., & Weis, J. S. (1997). Predator-prey relationships in mummichongs (Fundulus heteroclitus (L.)): Effects of living in a polluted environment. Journal of Experimental Marine Biology and Ecology, 209, 7587. http://dx.doi.org/10.1016/S0022-0981(96)02590-7CrossRefGoogle Scholar
Tsay, C. L., Jang, T. H., & Wang, L. H. (1995). Effects of mercury on serotonin concentration in the brain of tilapia, Oreochromis mossambicus, Neuroscience Letters, 184, 208211.CrossRefGoogle Scholar
Yanagisawa, H. (1998). HgCl2 – Induced acute renal failure and its pathophysiology. Nippon. Eisegaku Zasshi, 52, 618623. http://dx.doi.org/10.1265/jjh.52.618CrossRefGoogle Scholar
Zachi, E. C., Ventura, D. F., Faria, M. A. M., & Taub, A. (2007). Neuropsychological dysfunction related to earlier occupational exposure to mercury vapor. Brazilian Journal of Medical and Biological Research, 40, 425433. http://dx.doi.org/10.1590/S0100-879X2007000300019CrossRefGoogle ScholarPubMed
Zhou, T., John-Alder, H. B., Weiss, J. S., & Weis, P. (1999). Endocrine disruption: thyroid dysfunction in mummichogs (Fundulus heteroclitus) from a polluted habitat. Marine Environmental Research 50, 393397.CrossRefGoogle Scholar