Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T10:26:08.332Z Has data issue: false hasContentIssue false

A Derivation of the Polytomous Rasch Model Based on the Most Probable Distribution Method

Published online by Cambridge University Press:  17 November 2014

Stefano Noventa*
Affiliation:
University of Verona (Italy)
Luca Stefanutti
Affiliation:
University of Padua (Italy)
Giulio Vidotto
Affiliation:
University of Padua (Italy)
*
*Correspondence concerning this article should be addressed to Noventa Stefano. Center for Assessment. University of Verona. Verona (Italy). E-mail: [email protected]

Abstract

Boltzmann’s most probable distribution method is applied to derive the Polytomous Rasch model as the distribution accounting for the maximum number of possible outcomes in a test while introducing latent traits, item characteristics, and thresholds as constraints to the system. Affinities and similarities of the present result with other derivations of the model are discussed in light of the conceptual frameworks of statistical physics and of the principle of maximum entropy.

Type
Research Article
Copyright
Copyright © Universidad Complutense de Madrid and Colegio Oficial de Psicólogos de Madrid 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561573. http://dx.doi.org/10.1007/BF02293814 CrossRefGoogle Scholar
Andrich, D. (1982). An extension of the Rasch model for ratings providing both location and dispersion parameters. Psychometrika, 47, 105113. http://dx.doi.org/10.1007/BF02293856 Google Scholar
Aczel, J. (1966). Lectures on functional equations and their applications. New York, NY: Academic Press.Google Scholar
Boltzmann, L. (1877). Über die Beziehung dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht [On the relationship between the second main theorem of mechanical heat theory and the probability rates of the heat equilibrium].Wiener Berichte, 76, 373435.Google Scholar
Clinton, W. L., & Massa, L. J. (1972). Derivation of a statistical mechanical distribution function by a method of inequalities. American Journal of Physics, 40, 608610. http://dx.doi.org/10.1119/1.1988059 CrossRefGoogle Scholar
Darwin, C. G., & Fowler, R. H. (1922a). On the partition of energy. Philosophical Magazine, 44, 450479.Google Scholar
Darwin, C. G., & Fowler, R. H. (1922b). On the partition of energy – Part II Statistical principles and termodynamics. Philosophical Magazine, 44, 823842. http://dx.doi.org/10.1080/14786441208562558 Google Scholar
Darwin, C. G., & Fowler, R. H. (1923). Fluctuations in an assembly in statistical equilibrium. Proceedings of the Cambridge Philosophical Society, 21, 391404.Google Scholar
Ebneth, G. (1993). Das Bruchzahlverständnis von Schülern: Eine Untersuchung mittels logistischer Modellbildung [Students’ understanding of fractions: an investigation using the logistic modeling] . Münster/New York, NY: Waxmann Verlag.Google Scholar
Fischer, G. H. (1995a). Derivations of the Rasch Model. In Fischer, G. H. & Molenaar, I. W. (Eds.), Rasch Models (pp. 1538). New York, NY: Springer-Verlag.CrossRefGoogle Scholar
Fischer, G. H. (1995b). Derivations of the Polytomous Rasch Model. In Fischer, G. H. & Molenaar, I. W. (Eds.), Rasch Models (pp. 293305). New York, NY: Springer-Verlag.CrossRefGoogle Scholar
Huang, K. (1987). Statistical mechanics. New York, NY: John Wiley & Sons.Google Scholar
Jaynes, E. T. (1957). Information theory and statistical mechanics. The Physical Review, 106, 620630. http://dx.doi.org/10.1103/PhysRev.106.620 CrossRefGoogle Scholar
Jaynes, E. T. (1965). Gibbs vs. Boltzmann Entropies. American Journal of Physics, 33, 391398. http://dx.doi.org/10.1119/1.1971557 CrossRefGoogle Scholar
Jaynes, E. T. (1982). On the rationale of Maximum-Entropy methods. Proceedings of the EEE, 70, 939952. http://dx.doi.org/10.1109/PROC.1982.12425 Google Scholar
Karabatsos, G. (2001). The Rasch Model, additive conjoint measurement, and new models of probabilistic measurement theory. Journal of Applied Measurement, 2, 389423.Google Scholar
Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations of measurement, additive and polynomial representations. (Vol. 1). San Diego, CA: Academic Press.Google Scholar
Kelderman, H. (1995). The Polytomous Rasch Model within the class of generalized linear symmetry models. In Fischer, G. H. & Molenaar, I. W. (Eds.), Rasch Models (pp. 307323). New York, NY: Springer-Verlag.CrossRefGoogle Scholar
Landsberg, P. T. (1954). On most probable distributions. Proceedings of the National Academy of Sciences, 40, 149154. http://dx.doi.org/10.1073/pnas.40.3.149 Google Scholar
Lord, F. M., & Novik, M. R. (1968). Statistical theories of mental test scores. London, UK: Addison-Wesley Publishing Company.Google Scholar
Luce, R. D., Krantz, D. H., Suppes, S., & Tversky, A. (1990). Foundations of measurement, Vol. 3: Representation, axiomatization and invariance. San Diego, CA: Academic Press.Google Scholar
Masters, G. N. (1982). A Rasch Model for Partial Credit Scoring. Psychometrika, 47, 149174. http://dx.doi.org/10.1007/BF02296272 Google Scholar
Michell, J. (1990). An introduction to the logic of psychological measurement. Hillsdale, MI: Erlbaum.Google Scholar
Molenaar, I. W. (1995). Some background for Item Response Theory and the Rasch Model. In Fischer, G. H. & Molenaar, I. W. (Eds.), Rasch Models (pp. 314). New York, NY: Springer-Verlag.CrossRefGoogle Scholar
Noventa, S., Stefanutti, L., & Vidotto, G. (2013). An analysis of Item Response Theory and Rasch Models based on the most probable distribution method. Psychometrika. http://dx.doi.org/10.1007/s11336-013-9348-y Google Scholar
Patil, G. P (1965). On the multivariate generalized power series distributions and its application to the multinomial and negative multinomial. In Patil, G. P. (Ed.), Classical and Contagiuos Discrete Distributions, (pp. 183194). London, UK: Pergamon Press.Google Scholar
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenaghen, Denmark: The Danish Institute of Educational Research.Google Scholar
Rasch, G. (1961). On general laws and the meaning of measurement in psychology. Proceedings of the IV. Berkeley simposium on mathematical statistics and probability, Vol IV (pp. 321333). Berkeley, CA: University of California Press.Google Scholar
Schrödinger, E. (1946). Statistical thermodynamics. Cambridge, UK: Cambridge University Press.Google Scholar
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 623656. http://dx.doi.org/10.1002/j.1538-7305.1948.tb00917.x Google Scholar
Suppes, P., & Zinnes, J. L. (1963). Basic theory of measurement. In Luce, R. D., Bush, R. R. & Galanter, E. (Edd.), Handbook of Mathematical Psychology (Vol. 1). New York, NY: Wiley.Google Scholar